低アスペクト比蒸気タービン翼列の2次流れに関する研究
（第1報：損失発生機関）

堤 雅徳*・藤川 卓爾**

Study on Secondary Flow within Low Aspect Ratio Steam Turbine Cascade
(Phase 1: Mechanism of Loss Generation)

TSUTSUMI Masanori and FUJIKAWA Takuji

In order to address recent environmental problems such as global warming due to CO₂ emissions, continuous efforts are required to improve the performance of the steam turbine, which supports the base of energy conversion.

Although the aerodynamic design technologies of steam turbine have been developed remarkably by applying the computational fluid dynamics, it is not easy to reduce the losses within a low aspect ratio cascade in the control stage and high-pressure stages even if the latest three-dimensional design are used.

Then, the authors investigated the loss generation mechanism in a low aspect ratio cascade using the smoke visualization and detailed internal flow measurement with a micro pitot probe to develop the new technologies for reducing the secondary loss.

This paper describes the evolution of horse-shoe vortex and passage vortex through a turbine blade in experimental studies, theoretical approach to explain the motion of the vortex and the effects of inlet boundary layer on passage vortex interaction analyzed by three-dimensional viscous flow analysis.

1. 緒 言

地球温暖化に対する厳しいCO₂排出規制に代表されるように、深刻な地球環境問題への打ち手が望まれる現在、エネルギーエ変換の高効率化は今でも増して重要な課題であり、その根幹を支える蒸気タービンの性能向上技術開発には断たな努労が必要とされる。

蒸気タービン高性能化への要求は、1970年代の2度のオイルショックを皮切りに高まり、その性能向上の中核をなす翼形設計技術は数値流体力学（CFD：Computational Fluid Dynamics）の進歩とともに飛躍的な発展を遂げてきた。

1980年代には3次元流動解析手法の本格的な導入があり、その後も翼を弧形に曲げるなどの3次元空力設計が実用化されるに至り、現在では本手法は高圧段から低圧段長翼にわたる、ほぼ全ての段階に適用されている。

また、最近では3次元空力設計法はさらに高度
化し、非定常効果を考慮したもの、最適化手法を取入れた方法などへ発展し、これ以上の高性能の余地は残されていないようにもと思われる。

そもそも、タービン翼列の高性能化技術開発の歴史は主に2次流れ損失低減技術開発そのものといっても過言ではないが、2次流れに関しては古くから研究がなされてはいるものの、その詳細な機構が明らかになったのはついに1980年代であることである。

この時期より、翼前縁に発生する馬蹄渦の挙動に関する研究が数多くなされ、可视化実験によりその積乱の挙動が明らかになり、並行して開発された3次元粘性流れ動解析は、2次流れ損失の絶対値予測をほぼ可能にした。

しかし、現在までに開発された3次元空力設計法は比較的翼高さが大きいものに適用され、翼端後方の2次流れ渦が中央高さでふっつり干渉するような低アスペクト比翼面には適用されていないのが実情である。とくに、調速段や高圧上流段などでは圧力が高く体積流量が減少するため、翼高さは大変小さくなり、翼列内部流れも著しく3次元性を増し、従来の技術では大きな性能向上は望めない。

そこで、本研究では低アスペクト比タービン翼列の2次流れ損失低減技術を開発するため、損失発生機構の解明を目的として、翼高さの小さな翼列における2次流れの挙動をスモークワイヤによる可視化実験、および極小ピトー管を用いたトラバース計測により明らかにした。さらに、2次元ポテンシャル理論、および3次元粘性流れ動解析を駆使し、詳細な損失発生機構を説明した。

2. 従来の研究

2次流れは流れが曲がる際に、遠心力の影響で主流に直角方向に生じる流れであり、蒸気タービン、ガスタービン、圧縮機などのターボ機械内部流れにおいて発生し、その性能を劣化させる要因となる。

2次流れの制御は空力性能を向上させるために不可欠な技術として、過去より数々の研究がなされてきたが、最初に理論解析を与えたのはSquireとWinter(1950)である。彼らは軸流タービン翼列について、図1に示すように理想流体であっても、主流に直角な前流境界層の渦ベクトルωに関する方向を変えることにより、翼列内深く流れでも2次流れ(縦渦)ωが生じることを理論的に解析し、実験で検証を行っている。
これらの理論によると、図2の座標系で表される(1)式から翼通路の2次流れ速度成分v、wが入口主流Uの速度勾配(境界層速度分布)に、翼列の転向角εを掛け合わせた右辺より計算できることを示している。

$$\frac{\partial v}{\partial z} = 2\varepsilon \frac{\partial U}{\partial z}$$

これとほぼ同時期に、Hawthrone(1955)が古典的な2次流れ構造モデルを提案している。本モデル

![図1 入口渦糸転向による縦渦の発生](image1)

![図2 Squire & Winter の2次流れ解析座標系](image2)

図3 古典的2次流れ構造

ルによると、図3に示すように前流境界層に渦糸が存在し、これが翼列後流の通路渦（循環）になり、翼後縁端からは翼列スパン方向の渦度が流出する随伴渦が見られる。

その後、数つかの渦構造モデルが提案されたが、翼前縁で前流境界層の巻き込みにより発生する馬蹄渦、すなわち、Horse-shoe vortex（Stagnation point vortex）の存在を最初に指摘したのは Klein（1966）である。

それから数年後、馬蹄渦は Langston（1968）
Sieverding(1980)らにより巧妙に可視化され、その構造が明らかになった。

図4にSieverdingによるカラースモークワイヤを用いた可視化写真を示す。翼後縁のようどみ点で発生した馬蹄渦は翼の腹、背面へと差かれ、翼表面内を流れいく様子を黄色に着色された漆の流跡として見ることができる。また、同図下部より隣界層が翼先縁で脱離し、馬蹄渦が発生する様子が分かる。

本来、馬蹄渦の研究はガスタービン翼列の伝熱特性解析に端を発しており、数々の研究により2次流れ渦構造の解明は飛躍的に進んだ。

図5にWangら(1995)による詳しい2次流れ構造を示す。同図には前縁に発生して通路渦へと発達する翼面側馬蹄渦、および、それに巻きついて形成する体側馬蹄渦が存在する。また、腹背面の差圧により横断流が生じ、さらに翼端部には通路渦の反動で生じるとされるコーナ渦が認められる。

渦構造のみならず、2次流れ損失推定に関しても古くから様々な研究がなされてきた。古典的な手法として特筆すべきはAinleyら(1951)によるもので、揚力理論を基礎に、実験を介して損失推定式を与えている。その後、Ainleyらの研究に基づき数多く推定式が提案されたが、統一的に扱えるもののが殆ど見当たらない。

また、近年になり、エントロピー生成をベースとした理論がDenton(1993)により提唱されたが、これはあくまでも考え方を述べたものに過ぎず、同氏も定義的な推定には3次元粘性流動解析に頼らなければならないと述べている。

このように、最終的には著しい発展を見せる数値解析に向け着ぐ結論もあるが、解析も緻密になれば実験と同様に現象の理解が難しく、よりシンプルな理論の必要性も望まれる。

3. 2次流れ渦構造の可視化

前章で紹介した従来の研究は、その殆どが上下壁の2次流れ渦が分離しており、翼高さ中央近傍には渦は存在しない。そこで、筆頭著者は一対の渦が干涉するような高さの翼列を対象に、2次流れの構造を明らかにした。

3.1 可視化試験装置

本研究では、2次流れ渦の可視化に多くの研究者が採用しているスモークワイヤ法を用いた。試験に用いた風洞の外観および翼列部の拡大を図6に示す。風洞には気流を発生させるファンと、滑
らかな流れを得るためにハニカム材およびワイヤーメッシュで構成された整流格子を設けた。また、発煙ワイヤについては直径0.5mmのタンゲステン線を使用し、発煙材には、流動パラフィンにワイヤからの飛散を防止するためのアルミ粉を混ぜたものを用いた。なお、風洞の出口流速は約1m/s、Re数は2×10^5である。

供試翼列には代表的な低アスペクト比翼列である蒸気タービン調速段動翼を採用した。主な仕様表1に示すように翼幅89mm、翼高さ48-89mmで、フローガイドにより翼高さが変えられるようになっている。

3.2 可視化試験結果

(1) 翼通路断面
図7は翼端壁の翼通路断面における馬蹄渦の挙動を見たものである。上流より翼前縁に衝突した境界層の流れは、Langstonらのいう背面側馬蹄渦（Suction side horse-shoe vortex）と腹面側馬蹄渦（Pressure side horse-shoe vortex）に分かれていることがわかる。とくに、腹面側馬蹄渦は隣接翼の背面に移動し、背面側馬蹄渦と絡みながら後流側へ流れ去る。この前縁より発生する馬蹄渦のうち、腹面側の渦は背面側よりも大きく、後流側に向け発達するが、通常この渦を通路渦と称する。

(2) 翼高さピッチ断面
図8に3種類のアスペクト比における通路渦、腹面側馬蹄渦（通路渦） 背面側馬蹄渦

図7 可視化写真（腹面側の馬蹄渦）　[出典] 図6と同じ
図8 可視化写真（アスペクト比と渦構造）　[出典] 図6と同じ
アスペクト比が1.0の場合に、上下壁が各々の渦には大きな隔たりがあり、互いに影響を及ぼして
いない。またアスペクト比が0.7と小さくなるに
従い、上下渦の間隔は狭まるが、この場合には、通
路渦と側面側縫渦が鮮明に区別できる。
さらに、アスペクト比が0.54になると上下の渦
は翼高さ中央でぶつかり、お互いの渦が干渉しあ
うが、上下の背面側縫渦と思われる渦が通路渦
により圧迫され変形している様子が分かる。
一方、渦中心位置に関しては、全てのアスペク
ト比において上流側に比べ下流側では各々の渦が
接近しており、通路渦はある速度で翼背面に沿い
移動しているものと考えられる。
以上のスモーカウヤ法を用いた可視化試験よ
り得られた2次流れ構造モデルを図9に示す。
低アスペクト比翼列における2次流れ渦の挙動に
関し、その可視化例は従来には殆ど見当たらず、
今回の試験により貴重な知見が得られた。

4. 内部流動詳細計測

幅小5孔ビトー管を用い、低アスペクト比翼列
内部の圧力をトラバース計測して、2次流れ速度
分布、損失分布を定量的に捕らえることにより、
2次流れ損失発生機構を検討した。

4.1 翼列試験装置

試験に用いた風洞は吹き出し型低速風洞であり、
流出マッハ数は0.2、翼列にはアスペクト比(翼高
さ/翼幅)0.54の可視化試験と同じプロファイルを
採用した。

図10に幅小5孔ビトー管によりトラバースした
断面を示す。計測断面はA～Dに到る4個所であ
り、A断面は翼出口より入口側に向かって約0.5
翼幅、B断面は翼出口より入口側に向かって約1／6
翼幅、C断面は翼出口近傍、D断面は出口
から後流側流出口方向に1コード長の位置である。

翼列内部の2次流れの詳細な挙動を計測するに
は、プロッケージが小さく空間分解能が高いビ
トー管が必要であり、筆頭著者は図11に示す先端
が1.2mmの幅小5孔ビトー管を開発した。本ビトー
管は、翼列の出口側より入口に向かいトランス
を可能にするため90mmと長い先端長をもつ。

試験では計測断面においてビッチ方向と翼高さ
方向に網の目トラバースを行い、各点の全圧、静圧、
流れ角を計測し流速、エネルギー損失などを
求めた。

(1) 2次流れベクトルの定義

2次流れベクトルの定義を図12に示す。計
測された流れ角α、半径方向のビッチ角γをもつ
速度ベクトルWを青矢印で表すが、主流の平均
的な流れ角α。

αを与えれば、X-Z平面に直角な面
上にαとα。

αの角度差により合成される2次流れ
速度ベクトルV。(赤矢印)を定義することができ

図9 低アスペクト比翼列2次流れ構造モデル
[出典] 図6と同じ

図10 ビトー管によるトラバース位置
[出典] 図6と同じ
図12 2次流れ速度ベクトルの定義
[出典] 図6と同じ

（2）損失の定義

トーパース断面の各点で計測された圧力、流速、流れ角を用いて、局所的なエネルギー損失係数\(\zeta \)を次式で定義する。

\[
\zeta = 1 - \left(\frac{p_{2s}}{p_{1s}} \right)^{\frac{k-1}{k}}
\]

ここに

\(p_{1s} \)：翼列出口局所静圧
\(p_{2s} \)：翼列入口全圧

\(k \)：比熱比

次に、局所エネルギー損失係数を用いて、各領域方向断面でピッチ方向に積分したエネルギー損失係数 \(\zeta_m \)を次式で定義する。

\[
\zeta_m = \frac{\int_{s_{2s}} p V \sin \alpha ds}{\int_{s_{1s}} p V \sin \alpha ds}
\]

ここで

\(p \)：密度
\(V \)：出口流速
\(\alpha \)：流出角
\(s \)：ピッチ方向長さ

4.2 翼列試験結果

図13に低アスペクト比翼列を対象に、内部流動を詳細に計測した結果を示す。トーパース断面はA～Dと全4断面であり、各々につき約400の計測点を有し、2次流れ速度ベクトルと局所損失のコンターを重ねて表示している。各断面における流動の特徴をまとめると次のとおりである。

（1）A断面

翼端の背面側に強い渦の存在が認められるが、これは可視化試験でも見られた腹面側馬蹄渦と横断流れが重なり成長した通路渦と考えられる。
さらに、翼端壁上には腹面から背面に向かって横断流と思われる速度ベクトルが見られるが、その速度は小さく、損失の顕著な集積領域は存在しない。

(2) B断面

A断面で捕らえられた一対の渦は、さらに大きさを増して翼高さ中央近傍に移動しており、渦外縁での最大速度は断面Aで示された速度と同じ程度に保たれている。一方、上下の渦中心は接近してくるが、両渦と翼背面に挟まれた領域に赤く低エネルギー流体の集積がみられ、干渉による損失が増加し始める。

(3) C断面

通路渦の中心は翼高さ中央に位置しているが、B断面に比べ翼腹面側に移動しているのが分かる。損失の大きな赤色の領域は翼ピッチ方向に細く引き伸ばされており、通路渦より低エネルギー流体が主流の中に運搬され拡散していく。

さらに、注意深くみると翼背面チップ、ハブのコーナに微かに赤と黄色の損失の集積が見えて取れるが、これは可視化では確認できなかったWangのモデルに見られたコーナ渦によるものではないかと推察される。この渦は小さいため、回転方向までは確認し難い。

(4) D断面

C断面に対し、一対の通路渦の中心は、さらに翼腹面に移動しており、損失の大きな部分が拡散し主流域に占める割合が増している。また、上下端にはコーナ渦が拡散したものと思われる低エネルギー領域が残されている。

次に、図14に各トラバース断面におけるピッチと翼高さ方向の損失積分値と軸方向距離との関係、および各々の断面でのピッチ方向平均損失分布を示す。なお、同図はA断面における損失積分値を1として無次元化して表したものである。

まず、軸方向の損失分布より翼列入口からA断面を通過し、B断面にかけては、ほぼ直線的に損失が増加するが、B断面からC断面の間では急増する。これはピッチ方向平均損失分布に見られるように渦が干渉し、翼背面側に蓄積されてい
図4 2次流れ速度ベクトルとエネルギー損失計測結果
た低エネルギー流体が主流に向かって一気の拡散するためと考えられる。

とくに、C断面でのピッチ方向平均損失の最大値はB断面の約2倍にも達することが分かる。C断面からD断面では入口側よりも緩やかな勾配で損失の増加が進むが、損失のピークは拡散のためD断面の右側が小さくなっている。

このような、渦の干渉は低エネルギー流体を主流に広く拡散させる効果をもち、これが低アスペクト比翼列の性能劣化に繋がっているといえる。

5. 損失発生機構

本章では、実験により得られた結果をもとに、理論解析、流動解析を用いて損失発生機構をさらに詳しく検討した。

5.1 ボテンシャル理論による考察

図13は通路渦の速度ベクトルと損失の関係を示したものであるが、翼背面および翼中央高さでの渦運動は、ボテンシャル理論における鏡像の関係による動きに酷似していると思われる。

そこで、図15にボテンシャル理論の渦モデルを仮定して、この動きを説明する。図中に示す翼背面とΓで表される一対の循環(通路渦)は、上下壁の渦が離れている場合(図13A→B)には、翼背面を速度0とした鏡像の関係より壁に並進する。その後、翼高さ中央まで到達した一対の渦は、お互いの誘起速度で腹面側に移動(図13B→C→D)すると考えられる。

一般に、2次元断面のある点(x, y)に位置する循環Γの誘起速度は鏡像の関係を用いて次式で表すことができる。

\[x \text{ 方向速度: } u = \frac{\Gamma}{4\pi y} \frac{x^2}{y^2 + y^2} \] \hspace{1cm} (4)

\[y \text{ 方向速度: } v = \frac{\Gamma}{4\pi x} \frac{y^2}{y^2 + y^2} \] \hspace{1cm} (5)

(4), (5)式より初期位置が(a, b)にある渦の移動軌跡は次式で与えられる。

\[y = \frac{abx}{\sqrt{(a^2 + b^2)x^2 - a^2b^2}} \] \hspace{1cm} (6)

実験によって得られた図13のA断面における渦中心位置を初期条件として与え、(6)式によりその軌跡を推定し、各断面での計測された中心位置と比較した結果を図16に示す。

同図は通路渦の循環の強さが一定として求めたものであるが、簡単な理論と実験結果は良く一致していることが分かる。すなわち、実験結果に見られる渦は、大きさや回転速度を刻々と変えており、その軌跡はボテンシャル流れの渦運動により表されると考えることができる。

以上の実験結果やボテンシャル理論による考察より、損失発生に関係する主要因は通常いわれて
いるような腹面常圧に起因する翼端壁の境界層流れによる損失の蓄積に加えて、馬蹄渦の挙動に大きく影響を受けていると思われる。

次に、この馬蹄渦の成り立ちに関して、理論解析を行った結果を述べる。図17に前流境界層と翼前縁に発生する馬蹄渦の関係を示した模式図を示す。本来、馬蹄渦は空気の層である境界層が前縁に衝突し、外縁近傍で主流動圧が回復するため静圧が高くなり、境界層が壁側に巻き込まれることにより生じると考えられる。いま、厚さδの境界層に含まれる渦度が全て馬蹄渦に変化するとして、微小時間dτの間に、ある断面を通過する微小循環量を求める。一般に、与えられた面積の法線ベクトルと渦度の内積により循環が計算できるから

\[
dΔΓ = \int_0^δ (\mathbf{ω} \cdot d\mathbf{n}) \, dz = \int_0^δ \left(-\frac{\partial u}{\partial y} \right) (udτ) \, dz
\]

\[
= \frac{1}{2} \int_0^δ u \, dτ \, dy
\]

\[
= \frac{U^2}{2} \, dτ
\]

ここで、馬蹄渦の長さをτとし、境界層の平均流速U/2を仮定した場合に、この距離を通過する時間は次のようになる。

\[
t = \frac{τ}{U/2}
\]

従って、翼前縁馬蹄渦の循環量は次式で表すことができる。

\[
\Gamma = Uτ
\]

すなわち、渦の強さを表す循環は、流入速度と渦長さの積に比例することが導かれた。

そこで、この馬蹄渦が翼列内の渦干渉に与える影響をみるため、3次元粘性流動解析を用いて考察した結果を次に述べる。

5.2 3次元粘性流動解析による考察

数値解析手法には、汎用コードとして広く普及しているANSYS社のCFXを使用した。本コードはノードベースの有限体積法を採用しており、乱流モデルにはk-εモデルを選定した。また、解析メッシュについてはH型格子を用い、総数は約26万(軸方向101×ピッチ方向51×高さ方向51)である。

解析では、馬蹄渦の影響を見るために、実験において計測された前流境界層の全圧分布を入口境界条件として、乱流境界層を存在しない条件を与えた。

入口境界条件の違いによる翼前縁近傍の速度分布を図19に示す。前流境界層が存在する場合には、翼前縁で境界層が巻き込まれて馬蹄渦が発生している状況が見て取れる。

図20に翼後流側流出方向1.0コード位置におけるエネルギー損失係数の翼高さ方向分布を、前流境界層あり、なしの場合について、解析と実験結果を比較して示す。実験と同じ入口境界条件で解析した結果より、中央高さ近傍の損失に若干差はあるものの、損失ピークなどの絶対値と分布形
状は良く一致する。一方，前流境界階がない場合には，通路渦が干渉しないため，損失分布は中央翼高さでピークを持たず，その絶対値レベルは1/2程度に留まることも分かる。

さらに，図21にA～D断面における局所エネルギー損失係数を実験と解析で比較した結果を示す。

解析において前流境界階がある場合，B，C断面における上下壁の通路渦干渉による損失増大パターンについては，解析と実験ではほぼ一致するが，損失分布ならびに実験の方が干渉は強い傾向がある。一方，前流境界階がない場合は，翼端高さ近傍での損失増大は生じず，通路渦が干渉しないため，主流への低エネルギー流体の拡散は小さい。

この干渉による渦の発達過程をさらに詳しく見るために，図22に翼背面と通路面における限界流線を示す。限界流線とは，可視化法の一種である油膜法で得られる壁面せん断力および流れの方向を示すもので，流れの剝離状況などが判別できる。

前流境界階がある場合には，背面側では上下壁の限界流線が後線に向かうほど近づいており通路渦が干渉する傾向にあるが，前流境界階がない場合には流線の巻き上がりは小さく，渦を全く干渉しない。また，翼端壁面の流線よりも前流境界階がある場合には，境界層が翼前線，前方のとどまり点で剝離し，馬蹄渦の起点となるサドルポイントが明確に現れ，腹面から背面にかけて生じる順断流も強いことが分かる。

この結果より，先に紹介したHawthroneの古典的2次流れ構造モデルに見られるような通路渦が，前流境界階の渦度の変化によるものという考え方はある程度の得られたものといえる。

ただし，境界層の通路渦への変化には，翼前線に発生する馬蹄渦の介在があり，それが横断流とともに通路渦へ成長するという古典理論よりさらに複雑な発達機構が存在する。

以上の考察から，低アスペクト比翼列では前流境界階の存在により馬蹄渦が発生し，通路渦に発達，干渉するため，2次流れが強くなることが明らかとなった。また，ポテンシャル理論を用いた推察より，馬蹄渦の強さを表す循環が入口流速と渦長の積に依存するとすれば，これらを制御することにより2次流れ損失低減が可能になると考えられる。
<table>
<thead>
<tr>
<th></th>
<th>実験</th>
<th>CFD(前流境界層あり)</th>
<th>CFD(前流境界層なし)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図21 実験と粘性流動解析の比較(前流境界層の影響)

6. 結論

蒸気タービンの調速段、高圧上流段などの低アスペクト比翼列を対象に、2次流れ損失の発達機構を検討し、次のような知見が得られた。

(1)スモークワイヤ法を用いた可視化により、通路渦が翼壁に沿って移動し、背面側馬蹄渦を圧迫した状態で干渉する様子など、低アスペクト比翼列特有の渦挙動およびその構造が明らかになった。

(2)極小ビトー管を用いた内部流動計測結果より、

通路渦と翼背面境界での摩擦損失発生が顕著となり、上下壁の渦が翼中央高さにおいて干渉することにより、背面側に蓄積した低エネルギーフローが主流に逆流され、拡散してゆく損失発生機構を把握することができた。

(3)ポテンシャル理論を用いた考察より、翼列内一对の通路渦の挙動は鏡像の関係を用いて導かれる移動軌跡により表現できることが分かった。また、通路渦の原型である馬蹄渦の強さは、入口主流速度と渦の軸方向長さに関係していると考えられる。
図22 粘性流動解析による限界流線

(i) 前流境界層厚さの影響を考慮した 3 次元粘性流動解析を用いて、損失の発生状況を詳細に検討した結果、前流境界層が厚く、馬蹄渦が発生することにより、2 次流れが顕著となり、通路渦の強い干渉が生じることが明らかとなった。
これらの成果を踏まえ、2 次流れの抑制方法について第2報で詳しく報告する予定である。

謝辞

本研究における従来に例を見ない低アスペクト比翼列の2次流れ可視化、詳細渦動パターン計測は、三菱重工業平長崎研究所の松本敏之氏、渋崎秀吉氏、および長崎エンジニアリング㈱の権崎幸男氏のご尽力によるものであり深く感謝致します。
馬蹄渦の可視化写真（図7）は、学術的価値もさることながら、その美しさのため長崎研究所紹介パンフレットの表紙を長年に亘り飾ったものです。数々の試行錯誤の末、本写真を撮影された長崎エンジニアリング㈱の武次光浩氏に心より御礼申し上げます。
また、三菱重工業㈱長崎研究所の平野雄一郎氏には本研究を登用論文のテーマとして、実験データ解析などに多大なご協力を頂きました。
最後に、一連の研究開発を長きに亘りご指導、ご支援頂いた三菱重工業㈱長崎造船所の近藤武志氏に厚く御礼を申し述べ、謝辞と致します。

参考文献
2) 杉谷ほか：高性能新型蒸気タービン翼の開発及び運転実績，三菱重工技報，Vol.31，No.1，(1994-1)
16) 亀本修司：様々なスケールの渦について，ながれ，24123-150, (2005)