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Abstract 

Patients with lower limb dyskinesia due to stroke have the potential to remodel their motor 

nervous system. Gait deviations require data obtained from clinical gait analysis to assess the gait 

characteristics of the patient. Patients suffering from lower limb dyskinesia, especially in early 

stages of rehabilitation, have weak residual muscle strength in the affected limb and require 

passive training by the lower limb rehabilitation robot. Anatomy indicates that the biceps femoris 

short head muscle has a strong influence on knee motion at the swing phase of walking. The knee 

locomotion in gait cycle is actuated by the biarticular hamstrings (HAMS), gastrocnemius (GAS) 

and biceps femoris short head (BFSH). We sought to explore how it affects the gait cycle in the 

optimization framework. However, the training trajectory of conventional rehabilitation robots 

performing passive training usually follows gait planning based on general human gait data, which 

cannot simultaneously ensure both effective rehabilitation of affected limbs with varying severity 

pathological gait and comfort of the wearer within a safe motion trajectory. 

In this thesis, we propose a clinical gait analysis framework based on predictive simulation 

assessment in the lower limb exoskeleton rehabilitation (LLER) robot, including a predictive 

assessment module and an LLER robot controller module. The framework is mainly used for 

passive training in the early stage of rehabilitation and active training in the middle and late stages 

of rehabilitation. The predictive assessment module aims to reproduce the pathological gait and 

the gait parameters of the model are obtained through simulation. The desired parameters are 

selected as input expected values for the LLER robot to achieve a customized rehabilitation 

strategy. In predictive assessment module, to elucidate the effects of weakness and contracture, we 

systematically introduced isolated defects into the knee musculoskeletal model and generated 

walking simulations to predict the gait adaptation due to these defects. We applied mild, moderate 

and severe muscle weakness or contracture to the BFSH, trained the model to walk at a self-

selected speed, and investigated the relationship between them. The findings indicated that severe 

muscle contracture leads to severe knee flexion; severe muscle weakness induces a significant 

posterior tilt of the upper trunk, which hinders walking speed. Then, we attempt to establish 

modification rules for the knee locomotor model by modifying the model's muscle parameters to 

reproduce the gait characteristics of the affected limb. The effects of HAMS, GAS and BFSH on 

knee joint in gait cycle are investigated using predicted forward dynamics. The results showed that 

with more severe contracture, the non-swinging phase presented more severe knee hyperflexion 

and stronger knee torque, and the sensitivity for change is ranked by GAS>BFSH>HAMS. In 

swing phase, HAMS and GAS contractures aggravate the knee angle, whereas contractures of 

BFSH have a weak effect on knee angle. Mild HAMS muscle weakness accelerated walking speed, 

while moderate and severe HAMS muscle weakness hindered walking speed instead. BFSH 

muscle weakness is more sensitive to knee joint torque.  

In the early stages of rehabilitation training, the predicted simulation results are adjusted by 

the physiotherapist and used as the expected value for trajectory tracking. To achieve fast 

trajectory tracking and improve the anti-disturbance capability for LLER robot, a PD controller 

with gravity compensation and a robust controller are developed. In the mid to late stages of 

rehabilitation, activation of affected muscle groups tends to gradually restore the relationship with 
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the central nervous system (CNS). Therefore, we developed a multimodal integrated human 

intention recognition modual based on motor imagery (MI). It consists of an MI-based EEG intent 

signal acquisition framework and an EMG-based locomotion command correction framework. 

The EMG-corrected EEG commands start the LLER robot to perform one complete gait cycle. 

This active training aims to rebuild the patient's motor nervous system and achieve complete 

rehabilitation. 

Finally, a variable parameter impedance controller for the LLER robot is developed. We apply 

the knee joint angle and torque parameters optimized by predictive forward dynamics simulation 

as the expected values for the robot to achieve customized tuning of the motion trajectory for the 

exoskeleton rehabilitation robot and meet the different rehabilitation stages. 
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Chapter 1. Introduction 

In this chapter, we will present the study background, the current status of the study, and the 

purpose of the thesis. This chapter will give us a preliminary understanding of the research content 

and organization of the thesis. 

1.1 Background 

The aging population is a global issue, and physical deterioration and frailty in elderly people 

have become a socio-economic problem in many countries. A survey from the United Nations 

reveals that people older than 60 years represented 11.5% of the global population in 2012, and 

this percentage will be nearly doubled by 2050 [1]. Human knee joints play a crucial role in 

performing daily life activities, such as standing and walking. Each year 250 new lower spinal 

cord lesions occur in the Netherlands, resulting in paraplegia. These patients are paralyzed from 

the pelvis to the feet and lose, among other things, the ability to stand and walk [2]. Losing these 

abilities can have great consequences on the patient’s mental state. Patients with neurological 

disorders caused by disease or injury, such as stroke and spinal cord injury, commonly present 

with muscle weakness or contractures which lead to lower Limb dyskinesia [3]. Pathological gait 

with irregular muscle groups directly causes insufficient force or torque in the lower limb joints 

[4]. Janet Taylor and Dario Farina [5] found that due to muscle-related changes, a slower preferred 

walking speed emerged in elderly people as they improved their walking ability. Common gait 

deviations in cerebral palsy can be divided into gait patterns of spastic hemiplegia (drop foot, 

horseshoe in different knee positions) and spastic diplegia (true horseshoe, jumping, pronounced 

horseshoe and squatting) [6]. T Mark Campbell and Guy Trudel [7] investigated the associations 

between knee flexion contracture with the range of extension, function, pain, and stiffness of the 

contralateral knee. G.E. Rose et al. [8] found no significant relationship between time and body 

mass index for worsening knee flexion range, knee flexion in intermediate stance, peak knee 

extension in stance and hamstring length, and improvement in mean and maximum hip rotation in 

children with bilateral cerebral palsy and no history of orthopedic surgery in their gait analysis. 

However, there are many patients worldwide with knee impairments such as muscle weakness, 

pain, paralysis, and gait disorders, which can be caused by a stroke, spinal cord injury, post-polio, 

injury, osteoarthritis, and other diseases [9][10]. At present, with a rapidly aging population and 

the increase of physical movement disorders patients caused by various diseases, rehabilitation 

robot technology has become a new research field that combines medicine and engineering [11]. 

The study of movement draws from and contributes to diverse fields, including biology, 

neuroscience, mechanics, and robotics [12]. 

Traditional rehabilitation is not only physically exhausting for the therapist, but 44% of the 

patients who are rehabilitated by physiotherapy will have future problems [13]. Paralyzed patients 

with movement disorders require extensive rehabilitation programs to restore ambulatory function. 

Traditional manual therapy methods are labor-intensive and have limited therapeutic effects, thus 

promoting the development of robot-assisted rehabilitation therapy [14][15]. By using robotic-

assisted rehabilitation devices, it is possible to reduce the intensive work as well as facilitate the 

customization of rehabilitation based on the diagnosis of the data obtained [16]. There are several 
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methods to determine the appropriate trajectory for the movement of the rehabilitation robot (see 

Table 1.1). We note, a prerecorded trajectory obtained by gait analysis, a prerecorded trajectory 

during therapist assistance which requires data use, and modeling the trajectory based on 

normative movements which can be based on kinematics and/or dynamics constraints during the 

path motion in terms of fitting more realistic motion [17]. 

Table 1.1 Related work on rehabilitation robots. 
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For rehabilitation purposes, it is desirable to have the trajectories planning similar to the 

trajectories of a normal human lower limb movement, to ensure the comfortable and correct 

movements as practiced during activities of daily life. Indeed, motion therapy can be carried out in 

different modes including passive, active, active-resistive, active-assistive, and bilateral exercises, 

which differ depending on the degree of patient involvement [27]. Selecting the proper mode 

strategy requires an appropriate rehabilitation robot choice, with concerned patients. Its enables 

the robot to perform cyclic motion, which is an essential requirement for repetitive operations. 

Moreover, this approach requires little computational time, making it particularly favorable for the 

real-time control of a redundant robot. On the other hand, state-of-the-art bipedal locomotion 

control methods directly output joint torques, which ignore constraints and energetic costs 

imposed by muscle anatomy and physiology. Consequently, to accomplish a motion task, 

controllers often employ torque patterns that are inefficient or even impossible for humans. These 

biologically implausible torque patterns diminish the naturalness of the resulting gaits [28]. 

Therefore, devices that can help individuals with knee dysfunctions to regain the ability to walk 

with a natural gait are desirable, and they are designed to improve the physical and mental health 

of these patients. To obtain the reference trajectory, Bin Chen et al. [29] applied a motion capture 

system to acquire the 3D kinematic data from the lower body for normal walking of healthy 

people. Moreover, the joint angles at special timing were derived from the human exoskeleton 

system (HES) leg geometry constraints. They also modified the designed reference trajectories, 

such as gait period and amplitude, for different wearers according to their physical characteristics. 

However, it is a challenge to determine these characteristics, not to mention determining the gait 

reference trajectory for patients with pathological gait. It was found that inertial or optical motion 

capture sensors lack accuracy when estimating joint angles during motion capture, which could 

lead to incorrect data interpretation. Therefore, Halim Tannonus et al. [23] proposed fusion 

between inertial and visual motion capture sensors to improve the estimation accuracy of joint 

angles. In another study, Yi Zheng et al. used a human motion capture system: four high-speed 

cameras, a testbed, and a computer system to study the stability of the exoskeleton robot's 

climbing posture using an effective data acquisition area in the view of two high-speed 

cameras[30]. 

Patients with lower limb movement disorders, especially in the early stages of rehabilitation, 

have weak residual muscle strength in the affected limb and require passive training of the 

affected limb by a lower Limb rehabilitation robot [31][32][33]. In the continuous passive motion 

(CPM) stage [34], the rehabilitation robot mainly drives the affected limb to perform rehabilitation 

training according to the preset gait trajectory. However, the motion trajectory of conventional 

rehabilitation robots performing passive training follows a gait plan established based on normal 

human gait data [16]. This singularity in the motion trajectory of the rehabilitation robot during 

the passive training stage may not simultaneously ensure both effective rehabilitation and safe 

motion trajectories for different levels of pathological gait, and may cause patient discomfort 

during this rehabilitation training. Inverse kinematic simulations have been successfully applied to 

estimate human motions which are not directly observable, such as muscle forces or joint 

moments [35]. Although these inverse simulations provide useful insights into human motion, they 

rely on existing data and cannot predict new behavior [12]. Moreover, motion capture requires 

expensive hardware equipment, which makes it difficult to apply to the rehabilitation treatment 
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stage. 

BFSH weakness and contracture, usually occur in conditions such as cerebral palsy, stroke 

and secondary dysfunction after knee osteoarthritis surgery. Although these deficits are the 

pathologies that lead to the observed knee flexion contractures, this phenomenon is usually 

accompanied by neurological deficits and biomechanical factors, making it difficult to confirm the 

correspondence. Carmichael F. Ong et al. [3] applied the predictive dynamics simulation method 

to investigate how SOL and GAS muscles affect the plantar flexor of the ankle joint and 

generalized the relationship between them. Kirsten Veerkamp et al. [36] evaluated how 

gastrocnemius hyperreflexia affects gait kinematics by using predictive simulations. The isometric 

length and force of the muscles and tendons have a large effect on the movement of the knee joint 

[7]. Knee flexion contracture and semi membrane tendon and biceps femoris tendon affect each 

other [37]. Anatomy indicates that the BFSH muscle group has a strong influence on knee joint 

motion during the swing phase of walking [38][39]. 

The bipartite HAMS and the unipartite GAS and BFSH muscle groups play the most 

significant role in knee motion during the walking gait cycle [3][40][41]. Weakness and 

contractures of these muscle groups usually occur in conditions such as cerebral palsy, stroke and 

secondary dysfunction after knee osteoarthritis surgery [42][43][44]. Carmichael F. Ong et al. [3] 

applied the predictive dynamics simulation method to investigate how SOL and GAS muscles 

affect the plantar flexor of the ankle joint and generalized the relationship between them. Kirsten 

Veerkamp et al. [36] evaluated how gastrocnemius hyperreflexia affects gait kinematics by using 

predictive simulations. 

1.2 Current status of research and challenges for clinical gait analysis 

Research [45] has found gait analysis to be more accurate than visual gait assessment. Some 

research laboratories have provided evidence that gait analysis can change treatment decisions. 

Tishya A. L. Wren et al. [46] have found that gait analysis not only changes treatment decisions 

when inconsistent with the original treatment plan but also reinforces treatment decisions when 

consistent with the original plan. Cheng-Tang Pan and Yow-Ling Shiue [47] developed a multi-

loop modulation method on the servo drives for lower limb rehabilitation exoskeleton, the 

predefined joint trajectories were derived from clinical gait analysis or recorded by healthy 

individuals, which is the desired trajectory of a robotic exoskeleton. 

1.2.1. Application of multichannel SEMG in clinical gait analysis 

EMG sensors are devices that direct, amplify, record and display bioelectrical signals 

generated by the neuromuscular system as it completes its activity, and are used to reflect 

physiological information about muscles in real time. It is a meaningful assessment tool for 

locomotion function diagnosis and a better biofeedback therapy technique. 

Application of surface electromyography (SEMG) to the clinical evaluation of neuromuscular 

disorders can provide relevant ‘‘diagnostic” contributions in terms of nosological classification, 

localization of focal impairments, detection of pathophysiological mechanisms, and functional 

assessment. 

The present review article elaborates on: (Ⅰ) the technical aspects of the myoelectric signals 

acquisition within a protocol of clinical gait analysis (multichannel recording, surface vs. deep 
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probes, electrode placing, encumbrance effects) (Ⅱ) Sequence of procedures for subsequent data 

processing (filtering, averaging, normalization, reproducibility control) and (Ⅲ) a set of feasible 

strategies for the final extraction of clinically useful information. The application of SEMG for 

functional diagnosis is achieved through the kinematic and kinetic analysis of factors such as 

changes in passive muscle-tendon properties (peripheral non-neural components), paralysis, 

spasticity and selective loss of motor output of functionally antagonistic muscles by non-invasive 

assessment of relevant pathophysiological mechanisms impeding gait function [48]. The basic 

instrumentation is represented (see Fig.1.1): TV-based motion analyzer for retro-reflective markers 

detection, dynamometric force platform for ground reaction measurement, the portable device and 

the fixed unit of a radio-telemetric EMG system. The bipolar electrodes and their pre-

amplification case are depicted in the lower insect. 

 

Figure 1.1 Schematic view of SEMG application within a gait analysis laboratory. 

In clinical gait analysis, SEMGs are collected simultaneously with kinematic and kinetic 

descriptors of locomotor movements. These signals can be obtained by microswitches fixed on the 

foot plant, multi-sensor foot insole, ground reaction platforms, electrogoniometers and/or video-

analysis systems. Adoption of such a ‘‘comprehensive” approach might produce side effects in 

terms of slowing preparation time, possible appearance of fatigue phenomena in patients, and 

potential prejudice in their ability to perform natural locomotor actions, with consequent limitation 

of representativity of data collected. In fact, a crucial requirement for an EMG system to be 

applied in gait analysis is a minimum encumbrance, which can be achieved by adopting small pre-

amplifiers integrated into the electrodes, light flexible wires and relatively low-weight portable 

devices communicating to a fixed receiver unit by radiotelemetry (see Fig. 1.1). 

In a study performed by Winchester et al. [49] no-significant differences between surface, 

wire and no-electrode walking conditions were detected in normal adults as far as stride 

dimensions were considered. Quite noticeable in this respect is the recent implementation of 

separate radio-transmitting devices for each channel, which includes a couple of sensors, pre-
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amplifiers and radio-transmitter in a single self-powered case (see Fig. 1.2). One of the great 

advantages of the FREEDOM SEMG sensor is that the sensor module can be fixed in the muscle 

area to be measured as needed. The measurement signal channel is transmitted by the host 

computer via a wireless network, allowing the subject to make larger movements. Mainly used for 

muscle contraction pattern assessment, muscle fatigue assessment, athlete data interpretation and 

training recommendations. 

FREEDOM SEMG 
acquisition module

Skin surface 
anchoring

Software and hardware 
for FREEDOM

 

Figure 1.2 Wireless SEMG acquisition and analysis system: FREEDOM SEMG System. 

The current wireless surface EMG signal acquisition system used for gait analysis has the 

following features. 

⚫ Wireless transmission with real-time feedback. Synchronized display. Ultra-low power 

consumption: can work continuously for 10 hours and standby time >10 days. Skin fixation is 

strong and stable, with no displacement for strenuous movements, and high-fidelity 

restoration of biological signals. There are 10 channels EMG, combined with IMU sensor 

acquisition at the same time, it can realize multi-dimensional data accurate measurement, in 

addition to automatic analysis. 

⚫ Main applications: movement disorder analysis, assessment of the degree of muscle spasticity, 

movement pattern analysis, diagnosis and differential diagnosis. 

⚫ The sensor system integrates multi-dimensional information IMU sensors (gyroscope and 

acceleration sensor). 

⚫ The system integrates gyroscope (GYR). GYR sensor is a device used to measure the 

trajectory of the upper and lower limbs of the human body and the three-dimensional angle of 

the joints, which can collect human motion information in real time. 

⚫ Integrated acceleration (ACC) sensor. ACC sensor is used to collect real-time human motion 

angle information, which can realize simple motion capture function. 

⚫ The installation of the sensor is strong and stable: each sensor with auxiliary lamination 

silicone, the electrode piece is firmly fixed to the skin surface, greatly reducing the influence 

of motion and noise, ensuring the authenticity of the biological signal. 

SEMG sensors evaluate muscle movement mainly by measuring the activation of the muscle 

surface. The assessment for the degree of muscle contracture includes the following main aspects. 
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(Ⅰ) evaluation of muscle contraction and diastolic function, (Ⅱ) evaluation of neuromuscular motor 

control function, (Ⅲ) flexion-relaxation test, (Ⅳ) assessment of muscle coordination and (Ⅴ) 

testing of muscle endurance level. 

Using multi-channel EMG sensors to measure the subject's muscle groups, the motor status of 

the subject can be assessed synergistically. The movement disorder analysis mainly includes 

studies on the following areas. (Ⅰ) research on the coordinated control role of the skeletal muscle 

system, (Ⅱ) research on motor control in sports medicine, (Ⅲ) research on muscle stability and 

coordination, and (Ⅳ) assessment of muscle activation status. 

The main aspects for assessment during lower limb rehabilitation are: pre-operative and post-

operative assessment; assessment of rehabilitation effects; gait analysis; muscle fatigue analysis. 

The main operation steps of the SEMG sensor system (see Fig. 1.3) are: firstly, select test items 

and evaluation indicators, and then configure electrodes according to the posting point scheme. 

Secondly, guide the testing action and direct the completion of electrical signal acquisition; and 

thirdly, mark and intercept the acquired EMG data. Finally, customize the analysis/automatic 

analysis of data and generate data reports. The central motor nervous system consists of the 

cerebral cortex, spine and muscles. The central motor nerve sends commands in the form of 

electrical signals that reach the muscle surface and cause the muscle to contract, driving the limb 

to move. SEMG is fixed to the measured muscle surface and acquires the activation data of the 

muscle during gait. The pressure sensor on the sole can distinguish the gait posture by judging the 

change in pressure value (for instance, distinguishing gait transition). 

Central Nervous 
System

Muscle strength Limb kinematics 
and kinetics

Detection
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T2

T3

T4

T5

T6
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Figure 1.3 Schematic diagram of SEMG system in clinical gait detection analysis. 

The FREEDOM is a SEMG sensor system for muscle contraction pattern assessment, 

incorporating a plantar pressure detection device. The center of pressure (COP) refers to the point 

of action of the combined plantar pressure, reflecting the overall distribution of plantar pressure. 

The area of the foot COP curve envelope ellipse (see Fig. 1.4) reflects the stability of the subject 

directly. 
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1. Stability can be assessed mentally. The reasons for lack of stability in the vertical stance 

are both physiological and psychological, namely lack of strength in the core muscles and 

lack of concentration in the mental state. For the athlete, balance is primarily a reflection 

of mental status.  

2. Left-right balance: Measurement of the elliptical area of the COP envelope on the left and 

right side alone reflects the balance of both limbs. Promptly communicate with the athlete 

to adjust the training if it is due to muscle strength differences between the two sides, or 

to provide prompt treatment if it is due to injury, such as an injury on one side. 

3. Eye open/eye closed balance differences: Some athletes have significantly higher balance 

with eyes closed than with eyes open, presumably due to the exclusion of visual input. In 

trampoline, balance at the moment of net fall is critical and can be trained in both 

open/closed eyes to find the optimal balance pattern for the individual. 

The right foot of the test subject in Fig. 1.4 had a larger COP envelope area and poorer than 

normal balance test results, which was strongly related to the poor physical condition of the test 

subject at that time and should be continuously monitored to avoid movement hazards due to body 

imbalance. 

 

Figure 1.4 Application of pressure sensors in gait analysis. The red area indicates high pressure, 

blue area indicates low pressure. 

1.2.2. Application of EEG sensors in clinical gait analysis 

The method based on EEG signal extraction of patient's intention is another approach applied 

to lower limb rehabilitation training. Current research on this means focuses on the acquisition of 

EEG signals, extraction of valid information, Brain-Computer Interface (BCI) algorithms and the 

development of fusion with other sensors.  

MI is considered to be the best strategy for natural control of neural prostheses and BCI-based 

rehabilitation approaches [50]. Ang Kai Keng et al [51], in comparing a combined BMI robotic 

intervention with a robotic-only intervention, observed that the former required less intensive 

treatment for the same exercise gain, i.e., 136 and 1040 repetitions of exercise for each modality, 

respectively. The fact that combining BMI and MI associations may lead to better motor function 

outcomes is also supported by the EEG study by Pichiorri et al [52]. Muscular control during 

walking is believed to be simplified by the coactivation of muscles called muscle synergies. 

Although significant cortico-muscular connectivity during walking has been reported [53], the 
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level at which the cortical activity is involved in muscle activity (muscle synergy or individual 

muscle level) remains unclear. Brain decoding techniques, which predict the mental or motor state 

of a human from recorded brain signals, have received substantial attention for the development of 

brain-machine interfaces (BMIs) for repairing or assisting deficits in cognitive or sensory motor 

functions [54]. BCI record, infer and translate different parameters associated with movement 

from different types of brain signals to provide volitional control to prosthetic limbs, exoskeletons, 

computers, and even digital avatars. It is a well-known fact that not only the cerebral cortex but 

also the cerebellum and spinal cord all play a crucial role in ambulatory movements. It is of 

interest to understand how much information we could extract from the cerebral cortex using non-

invasive technology. Previous studies of BCI based on scalp EEG have demonstrated the 

feasibility of decoding kinematics for lower limb movements during walking. Sho nakagome et al. 

[55] investigated offline decoding analysis with different models and conditions to assess how 

they influence the performance and stability of the decoder. In the study of Yokoyama H et al. [56], 

artifacts in EEG signal were removed using artifact subspace reconstruction (ASR) method. Brain-

Computer Interface (BCI) or Brain-Machine Interfaces (BMI) have been more extensively 

investigated in recent years in the scope of gait rehabilitation due to their great prospect in 

understanding and analyzing gait-related brain rhythms and Event-Related Potentials (ERPs). As 

EEG signals can act as a real-time projection of brain’s motor activity during gait, EEG-based gait 

studies hold significant potential in achieving early prediction of future movement plans which 

researchers can readily utilize for more effective rehabilitation of motor-impaired persons 

providing them with necessary motor capabilities. In a BCI-based rehabilitation system, the brain 

waves are extracted, processed, and translated to control an assistive device [57]. For an effective 

assistive system, it is critical to detect the movement intention as early as possible to provide the 

system with enough time to adapt to the requirement of the individual [58]. There have been two 

majorly reported neural features related to movement intention detection. Those are Movement-

Related Cortical Potential (MRCP) [59] and Event-Related Synchronization/ Desynchronization 

(ERS/ ERD) [60]. 

Prediction of Gait intention from pre-movement Electroencephalography (EEG) signals is a 

vital step in developing a real-time BCI for a proper neuro-rehabilitation system (see Fig. 1.5). 

Shafiul Hasan et al. propose the feasibility of a fully predictive method that detects the intent to 

start and stop gait cycles by using EEG signals obtained before the event [57]. They customized 

an 8-channel EEG system with electrodes placed around the sensorimotor cortex of the subject's 

head. EEG signal extraction was used to capture information related to alpha and beta band events 

in the frequency domain using a discrete wavelet transform-based method. The feature set was 

then classified using a support vector machine (SVM) classifier with an RBF kernel in a tenfold 

cross-validation scheme for the "walk vs. stop" and "rest vs. start" categories. 
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Figure 1.5  Architecture for clinical gait analysis based on BCIs.  

EEG signal acquisition equipment: Electroencephalography (EEG) is a non-invasive 

technique used to detect and record the sum of voltages generated on the cortex by cortical activity. 

Unlike the invasive methods of inserting electrodes or implanting parts of the brain for behavioral 

observation, EEG can be applied to humans without ethical controversy. Different from medical 

imaging techniques (like fMRI), EEG recordings have a high time resolution and are therefore 

mainly used to detect event-related potentials that last only a few milliseconds. The EEG electrode 

cap records the amplitude potential difference between the active electrode on the scalp and the 

reference electrode. The active electrode on the EEG electrode cap usually follows the 10-20 

international system, as shown in Fig. 1.6. 

 

Figure 1.6  EEG Electrode Montage Corresponding to the International 10-20 System. 

The parameters of some EEG amplifier equipment manufacturers and main products are 

shown in Table 1.2. 
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Table 1.2 Part of the EEG acquisition equipment parameters. 

Company Name Device Name CMRR Bandwidth Sample Rate 

NeuroScan SynAmps 2 110 DC-3500 Hz 20000 Hz 

EGI NetAmps 300 120 DC-4000 Hz 20000 Hz 

Brain Products DC 120 DC-4000 Hz 1000 Hz 

Symtop UEA 98 0.5-120 Hz 1000 Hz 

1.2.3. Challenges 

As a part of a gait analysis protocol, the SEMG is being more and more frequently applied to 

clinical problems. The development of proper tools to facilitate data comparison and quantitative 

description of SEMG locomotor patterns will possibly contribute to a more effective use of 

kinesiologic electromyographphy. For this purpose, one important aspect is the need to harmonize 

the recording techniques in terms of electrode positioning, signal conditioning and filtering, data 

reporting, and parameters’ extraction [48]. EMG methods cannot be used as input to LLER robots; 

for example, patients with complete lower limb paralysis may not be able to use devices such as 

exoskeletons because it is difficult to obtain control signals from the muscles of the paralyzed 

limb. On the other hand, as technology advances, BCI (brain-computer interface) or BMI (brain-

machine interface) has attracted the attention of the bio-robotics field. Brain-machine interface can 

open up new ways to directly decode the user's brain signals to control devices such as prostheses, 

exoskeletons or wheelchairs; for example, even if the user's limbs are not capable of any adequate 

movement, he/she can still generate commanding brain signals that can be used in this brain 

control interface to drive an exoskeleton. However, BCI/BMI using only EEG signals as the 

primary input has not been fully accepted in bio-robotic applications due to the difficulties of EEG 

such as low reliability, low accuracy, poor user adaptability and low data transmission rate. 

Therefore, the low accuracy of EEG decoding and the design of effective paradigms for MI are 

problems that hinder the application of EEG in rehabilitation devices. 

1.3 Lower limb exoskeleton rehabilitation robots: state-of-the-art 

In the nearly six decades since researchers began to explore methods of creating them, 

exoskeletons have progressed from the stuff of science fiction to nearly commercialized products. 

While there are still many challenges associated with exoskeleton development that has yet to be 

perfected, the advances in the field have been enormous [61]. 

In this section, we review the history and discuss the state-of-the-art of lower Limb 

exoskeletons and mobile orthoses. We provide an overview of the design of the three main types 

of lower Limb exoskeletal rehabilitation robots (see Table 1.3) described in the literature and 

conclude with a discussion of the major advances that have been made and the obstacles that 

remain to be overcome. 

1.3.1 Lower limb exoskeleton rehabilitation robot 

Exoskeletons are wearable robotic systems that integrate human intelligence and robot power. 

At present, the mainstream lower limb rehabilitation robots have the forms of sitting, suspension 

and walking assistance. Typical lower limb exoskeletons are used for gait rehabilitation, human 

movement assistance and human strength enhancement[16]. The Ekso (see Fig. 1.7A) lower limb 
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exoskeleton rehabilitation robot is the most representative rehabilitation device, the user usually 

needs a sling to hold the pelvis, allowing patients with lower limb movement disorders to achieve 

the function of walking on a simple flat surface. However, this type of rehabilitation robot is 

usually expensive, in addition, the configuration of the lithium battery in the back increases the 

burden on the wearer. 

Table 1.3 Design of some Institute exoskeleton robots. 
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Hip joint degrees of freedom sequence: flexion/extension, ab/ad-duction, rotation; 

Ankle joint degrees of freedom sequence: plantar/dorsal flexion, in/e-version, pro/supination; 

A-actuated, U-unactuated, N-no DOF. 

The LLR-II Rehabilitation is a seated rehabilitation device in which the robot drives the 

affected limb to perform rehabilitation training. This type of rehabilitation robot can be used 

without considering the change in the position of the center of gravity. Such rehabilitation robots 

can realize active rehabilitation training mode in which the affected limb drives the movement of 

the exoskeleton robot and passive rehabilitation training mode in which the exoskeleton drives the 
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movement of the affected limb according to the preset movement trajectory. The robot modeling 

approach uses joint space planning, that is, the planning of each joint is realized by calculating the 

interpolation points of each joint angle. Moreover, the LLR-II rehabilitation is equipped with joint 

torque sensors and six-dimensional force sensors on the foot soles. In the training task, man-

machine interaction force information is collected, from which can be extracted characteristic 

quantities to predict the task difficulty by using support vector machines. 

A B

C

 

Figure 1.7 Three types of lower limb exoskeleton rehabilitation robots. (A) Upright rehabilitation 

robot [19], (B) The LLR-II Rehabilitation [62], and (C) Planar parallel lower limb rehabilitation 

robot [63]. 

Plane-parallel type rehabilitation robots, mainly use motion planning in Cartesian space, 

namely, planning the end trajectory in Cartesian space and then solving the inverse for each 

interpolation point to calculate the angle corresponding to each joint. Vasanthakumar, M et al. [63] 

developed a planar hybrid 1P-2RP robot for lower limb rehabilitation applications that combines 

the advantages of both serial and parallel manipulators, and validated the proposed robust sliding 

mode control through rigorous experiments by varying the control parameters. The optimal 

combination of the controller parameters obtained by parametric sensitivity analysis in the 

presence of external disturbances and parameter uncertainties is achieved, with the task space 

position error within 2𝑚𝑚  of the whole trajectory in magnitude. Thus, the proposed control 

scheme is suitable for lower limb rehabilitation applications, especially for stationary trainers. 

Jezernik et al.[64] developed the robotic orthotic Lokomat, a rehabilitation robot developed to 
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train spinal cord injury and stroke patients on a treadmill as a motor automation device. The Ekso 

GT exoskeleton [65] developed by Ekso Bionics is a wearable exoskeleton suit designed for the 

assistance and rehabilitation of patients with various levels of lower limb weakness. It is suitable 

for rehabilitation training for patients with lower limb mobility. 

LLER robots are primarily developed for three types of applications. The first application 

focuses on gait rehabilitation (i.e. helping patients with mobility disorders in the rehabilitation of 

musculoskeletal strength, motor control, and gait). The second application is human locomotion 

assistance, which is targeted at paralyzed patients who have lost motor and sensor function in their 

lower limbs. Assistance from exoskeletons enables these patients to regain the ability to stand up, 

sit down, and walk, just as an able-bodied person [66]. The third application of exoskeletons is 

aimed at enhancing the physical abilities of able-bodied humans (i.e. human strength 

augmentation) [67]. 

1.3.2 Challenges 

According to literature investigation, the main challenges regarding lower limb exoskeleton 

rehabilitation robots are divided into the following areas. 

1. The power supply, lightweight actuators, and efficient transport are among the many issues 

that all researchers in the field of exoskeleton rehabilitation robotics would have to face. 

Obviously, especially for those at more advanced stages of exoskeleton development, for 

many power, actuator, and other subsystems, the off-the-shelf components do not meet the 

low weight, high efficiency, and other criteria needed to achieve their design goals [68]. 

Indeed, it is a problem faced by many areas of mobile robotics, especially those with 

anthropomorphic architectures. The field of biomechanics for human motion has matured in 

recent decades, providing the necessary background science for designing devices with 

dynamics very similar to those of the operator's motion. And of course, the latest 

technological advances in computation, sensing, and control have advanced so rapidly that 

these areas are no longer major obstacles to the implementation of robotics hardware. 

2. There is a lack of published quantitative studies on the effects of exoskeletal devices that have 

been reported to improve human locomotion on the affected limb. In addition to motor 

performance as assessed by metabolic cost, other performance metrics applicable to these 

types of systems including reduced forces on the musculoskeletal system, reduced muscle 

fatigue, and improved bipedal stability all necessitate long-term follow-up measurements for 

analysis. Of course, there are many design challenges that may contribute to poor exoskeleton 

performance: joint mismatch between the operator and hardware, kinematic constraints from 

accessories such as the safety belt and fixation straps, designs that are not optimized for 

weight-bearing gait [69], increased operator forces to resist motion, and suboptimal adding 

power, etc. However, all of these problems are difficult to solve and there are many 

opportunities for basic research to deal with these challenges. 

3. Lower limb exoskeleton rehabilitation robots also face the daunting problem that the specific 

nature of the disability varies from patient to patient. This makes it difficult to develop a 

device that is universally applicable. In fact, this is a challenge for many assistive devices. 

Therefore, the development of customized rehabilitation modules for the clinical gait analysis 

of different patients is necessary. 
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4. An improved understanding of muscle and tendon function in walking and other locomotor 

tasks may contribute to understanding more effective exoskeletal leg structures. Gait models 

based on actual machine components that capture key features of human motion could 

enhance understanding of human leg morphology and control, and lead to similar 

improvements in efficient, low-mass exoskeleton design [70]. 

1.4 Research program of the thesis 

Patients with lower limb dyskinesia due to stroke and other diseases have the potential to 

remodel their motor nerve function. They can usually be rehabbed with the help of rehabilitation 

equipment. Impressive results of the rehabilitation robot trajectory have also been achieved by 

controllers based on tracking motion capture data [71][72][73][74]. However, as with methods 

that tune joint trajectories or controller parameters by hand, motion capture driven controllers have 

a limited ability to predict changes in gait. For the lower limb rehabilitation training performed by 

this type of patient, this article proposes a novel approach of clinical gait analysis based on 

predictive assessment for the exoskeleton rehabilitation robot. The approach involves not only the 

passive training pattern of the affected limb in the early stages of rehabilitation, due to weak 

muscle strength (Chapter 3) but also the active training pattern of the affected limb in the middle 

and late stages of rehabilitation (Chapter 4). Aiming to adapt the lower limb exoskeleton device to 

the rehabilitation training requirements of different affected limbs, this article proposes to 

implement clinical gait analysis by an approach of forward kinetic predictive assessment 

simulation. Therefore, we will focus on the relationship between the predictive assessment model 

and the influence of the knee joint during the gait cycle in rehabilitation training. The goal is to 

reproduce the diseased gait of the affected limb and gradually achieve a normal gait after the 

parameters are adjusted by the psychotherapist. The framework not only avoids secondary injuries 

to the affected limb caused by a large range of rehabilitation actions, but also reduces the patient's 

discomfort and improves resistance to rehabilitation training. 

In this article, we simulate pathological gait by predicting forward dynamics, using energy 

efficiency as a high-level objective (using minimizing the total cost of transport within a self-

selected speed while ensuring head stability as a high-level goal), and the gait controller uses a 

combination of state machines and low-level control laws to determine the excitation, calculating 

the optimal trajectory of motion to perform a given task and seeking the relationship between the 

influence of the muscle-tendon system on pathological gait. We systematically introduce the 

isolated BFSH muscle group into the musculoskeletal model as an example of knee dyskinesia in 

order to predict gait adaptation due to deficits in this muscle group. We apply mild, moderate and 

severe muscle weakness or contracture to the BFSH and retrained the model to walk at a self-

selected speed to recreate pathological gait without experimental data and obtain more realistic 

changes in knee parameters. Then, we attempted to explore the characteristics for reproducing the 

patient's gait just by modifying the parameters of the model muscles. Therefore, mild, moderate 

and severe muscle weakness or contractures were applied to the HAMS, GAS and BFSH muscle 

groups, respectively, and the models were trained to walk at self-selected speeds. Finally, we 

developed an impedance control model for the lower limb exoskeleton rehabilitation robot: we 

adopted the knee joint angle and torque parameters optimized by using predictive forward 

dynamics simulation as the desired values for the robot in order to achieve customized tuning for 

the robot motion trajectory. 
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This approach obtains as realistic a model of pathological gait as possible by studying the 

effect of muscle weakness or contraction of injured muscle groups on walking, and feeds the 

changed parameters such as angle, angular velocity and torque of each joint of the optimized 

model into the exoskeleton rehabilitation robot controller as feedback parameters to achieve 

customized passive training motion trajectories. This not only realizes progressive rehabilitation 

training, but also increases the comfort of the wearer and alleviates the rebelliousness of the 

patient. 

The goal of our work is to enhance the realism of locomotion gaits exhibited by physically-

simulated humanoids without dependence on motion capture data. To this end, we augment the 

joint-actuated humanoid model with a set of Hill-type musculotendon units (MTU). These 

musculotendon units generate torques for the most important degrees of freedom (DOF) during 

locomotion: the sagittal plane hip, knee, and ankle DOF. To actuate these muscles, we define 

biologically-motivated control functions that map the current state of the body (joint angles, 

muscle fiber lengths, etc.) to excitation signals. The parameters of these functions are optimized to 

yield gaits that move the character forward without falling down. The comparison of the predictive 

assessment module with the LLER robot approach to implementation is shown in Fig. 1.8. The 

musculoskeletal model used for the predictive dynamic simulation is based on an adult, 

approximately 1.8m in height and 75.2kg in weight, used to simulate lower limb gait. The model 

is driven by 18 Hill-type musculoskeletal units with nine per leg [28]. The lower limb exoskeleton 

robot is based on controller system, actuator system, sensor system, power supply and exoskeleton 

robot mechanism. Sensor systems include surface electromyography (SEMG) sensors, 

piezoelectric sensors, encoders and posture meters. 

To achieve the above description, the framework we developed needed to solve the following 

problems. 

A. By predicting the forward dynamics to model pathological gait, the gait controller 

combines high-level state machines and low-level control laws to determine the 

excitation and calculate the optimal motion trajectory to perform a given task, seeking 

the relationship between the effects of the musculotendinous system on pathological gait. 

B. 2. Construct an exoskeleton robot model based on impedance control strategy, develop 

PD control algorithm with gravity compensation and LLER robot controller with robust 

adaptive algorithm, respectively, to realize and optimize the trajectory tracking in passive 

training mode. Develop the impedance controller with variable parameters, and adjust the 

impedance parameters according to the rehabilitation status of the affected limb, which 

can make the LLER robot exhibit damping and flexibility. 

C. 3. Combining A and B, the optimization results of the predictive assessment mentioned 

in 1 (parameters such as angle, angular velocity and torque of each joint of the robot) are 

used as input data for the control system of the exoskeleton robot mentioned in 2. Realize 

the design of corresponding robot rehabilitation movement patterns for different 

pathological gait patterns when performing passive training with the help of the LLER 

robot. 

D. In the middle and late stages of rehabilitation training, the affected limb needs to undergo 

active training with the help of the LLER robot. By applying the multi-sensor integration 
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(EEG and EMG sensors) based on motor imagination, we can obtain the accurate 

intention of the trained person in multiple ways, so that the patient can perform 

autonomous rehabilitation training in the middle and late stages of rehabilitation, and 

help the motor nervous system to achieve the reconstruction as soon as possible. 
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Figure 1.8 Comparison of predictive forward dynamic simulation and LLER robot. 

Advantages of the framework: a. Through gait diagnostic analysis, the intrinsic cause of the 

affected limb can be considered more accurately; b. Because it is a predictive model construction, 

it does not return to cause trauma to the patient; c. To avoid the patient's inaccurate subjective 

judgment leading to unsatisfactory rehabilitation results; d. In the initial stage of rehabilitation 

with the help of the robot for passive training, it can be adapted to different pathological gaits and 

obtain appropriate rehabilitation actions to avoid secondary injuries caused by excessively large 

rehabilitation actions in passive training. 

1.5 Organization of the thesis 

The remainder of the thesis is organized as follows: Chapter 2 presents the general framework 

of the lower limb exoskeleton rehabilitation robot, the passive training-based predictive simulation 

assessment and the active training-based multi-sensor fusion framework. Followed by Chapter 3, 

the predictive dynamic modeling of the BFSH muscle-tendon system is presented as an example 

and the relationship between its influence on the gait cycle is described and the relationship 

between the impact of HAMS, GAS and BFSH on the knee joint is summarized. Chapter 4 

presents an MI-based intent detection module for patients with multimodal integration for driving 

rehabilitation robots for more accurate active training. Chapter 5 introduces the human-robot 

system model, establishes the exoskeleton robot model based on impedance control strategy, 

designs different intelligent algorithms to optimize the model, and combines Chapter 3, the knee 

joint parameters optimized by the predictive assessment are used as input parameters for the pre-

passive training of the rehabilitation robot. Chapter 6 presents a conclusion, including our 

contributions and future work and expectations. Next is the reference list used in this thesis. 
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Chapter 2. Overall Framework 

This article presents a novel approach to clinical gait analysis based on predictive assessment 

for the exoskeleton rehabilitation robot, which mainly includes a predictive simulation-based 

clinical gait assessment module and a rehabilitation robot controller module for different 

application scenarios. In addition, a patient intent detection module with multi-mode integration 

applied to the active training mode is proposed to enhance motor neural remodeling. From our 

study and findings from the literature, we suggest that the use of hybrid interfaces may be the key 

to enhancing the usability of technologies restoring or assisting the locomotion of a wider 

population of patients in clinical applications and outside the laboratory environment. 

2.1 The overall framework of the system  

The overall framework involves the predictive assessment module and the LLER robot 

controller. The predictive assessment module is a novel approach to clinical gait analysis, which 

can reproduce the patient's pathological gait by simulation and can calculate various parameters of 

the model during the gait cycle. The physical therapist is allowed to select the expected values of 

the desired parameters as the LLER robot controller to achieve customized robot trajectory 

planning. In order to make the interface between the predictive assessment module and the robot 

more accurate and safe, we require the help of a physical therapist. 

2.1.1 Predictive Assessment Module 

In this thesis, the pathological gait is simulated by the predictive forward dynamics with 

energy efficiency as the high-level goal. The gait controller uses a combination of state machines 

and low-level control laws to determine the excitation, aiming at calculating the optimal motion 

trajectory to accomplish the given task and ultimately seeking the relationship between the impact 

of the tendon system on the pathological gait. 

First, we tried to systematically introduce the isolated BFSH muscle into the musculoskeletal 

model as an example of knee dyskinesia in order to predict gait adaptation due to the lack of this 

muscle group. We apply mild, moderate and severe muscle weakness or contracture to the BFSH 

and retrained the model to walk at a self-selected speed to recreate pathological gait without 

experimental data and obtain more realistic changes in knee parameters. The framework obtains 

the realistic pathological gait model by studying the effect of muscle weakness or contraction for 

injured muscle group on walking, and then inputs optimized parameters (angle, angular velocity, 

and torque, etc.) into the exoskeleton rehabilitation robot controller as feedback in order to achieve 

customized passive training motion trajectories.  

The results of the study on the relationship between the effects of BFSH on the knee joint 

during the swing phase have given us more confidence in the study on the effects of each major 

muscle group on the knee joint during its movement in the gait cycle. We attempted to explore the 

characteristics for reproducing the patient's gait just by modifying the parameters of model 

muscles. Therefore, mild, moderate and severe muscle weakness or contractures were applied to 

the HAMS, GAS and BFSH muscle groups, respectively, and the models were trained to walk at 

self-selected speeds. The obtained predicted simulation results for the normal gait need to be 

verified by experiments. After analyzing the optimization results for different severity levels, the 
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modification rules are summarized. In other words, by studying the relationship between the 

model's muscles and gait, the final goal is to build a library of modification rules.  

The structure of the rehabilitation framework based on predictive assessment (see Fig. 2.1) 

includes clinical gait analysis based on predictive assessment and a multimodal controller for the 

exoskeletal rehabilitation device. The yellow area (see Fig. 2.1) indicates the clinical gait analysis. 

First, the patient needs to undergo a detailed clinical diagnosis to ensure that the conditions 

described in chapter 2.2.2 are met. Next, the physiotherapist modifies the parameters of the 

predictive assessment model according to the modification rules in relation to the damage of the 

affected limb, and uses the SCONE software to reproduce the simulation of the pathological gait, 

while obtaining the motion parameters of each joint during the gait cycle. Finally, the 

physiotherapist increases the offsets of the joint motion parameters according to the condition of 

the affected limb. These data will be used as input expected values for the controller of the 

exoskeleton rehabilitation device to guide the device to perform customized trajectory tracking for 

passive training. 

2.1.2 LLER Robot Controller 

LLER devices can be single joint motor rehabilitation devices, multi-joint rehabilitation 

centers or assisted walking rehabilitation robots (like the Ekso robot[75]). The joint movement 

control of these devices requires the integration of impedance control and some intelligent 

algorithms (e.g. particle swarm optimization algorithms or fuzzy neural networks), the former to 

achieve the damping effect and elasticity effect of the joint movement and the latter to achieve the 

tuning of the impedance control parameters. 

The multi-modal integrated human Intent recognition module based on MI (see the bottom of 

Fig. 2.1) is applied to the active training mode of the LLER robot. The main features of this model 

are: 1. After the preliminary passive training, the motor nervous system of the affected limb has 

been gradually reconstructed; 2. After the preliminary training, the activation of some muscles of 

the affected limb has been restored and can show normal muscle activation. Based on this, the 

human intent recognition module mainly consists of two parts: the EEG intent signal acquisition 

module based on MI and the SEMG-based motor command correction module. Among them, the 

MI-based EEG intent signal acquisition module relies on the passive training in the pre-

rehabilitation period to generate an effective EEG signal of MI which drive the LLER robot to 

execute the pre-programmed trajectory training. The SEMG-based motor command correction 

module is based on fixing EMG dry electrode sensors to the muscle region of the affected limb 

with activation capability. By detecting muscle activation with the EMG sensor, SEMG module 

corrects the intended control commands after EEG acquisition and processing. Only when the 

EEG driving command and SEMG muscle activation command are satisfied at the same time, the 

control command of the LLER robot is valid. Otherwise, it will be considered as an invalid control 

command. 

Overall, the functional design of the controller should be developed to meet the actual 

rehabilitation training needs, while the specific mechanical form of the exoskeleton rehabilitation 

robot is not specifically requested by this framework. In addition, this module requires that 

patients have an initial diagnosis to ensure that their central nervous system has the potential to 

recover. The physical therapist needs to be involved in the whole process, not only to choose the 
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modified plan according to the pathological gait, but also to adjust the parameters of the robot 

controller according to the rehabilitation process to guarantee the rehabilitation safety and improve 

the rehabilitation effect. 
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Figure 2.1 Architectural of the rehabilitation framework based on predictive assessment. 

2.2 Framework functionality and preliminary considerations 

The framework presented in this article is focused on the affected limbs with lower-limb 

paralysis due to stroke. Such patients usually show that their locomotor nervous system can be 

remodeled by external stimulation. Moreover, the residual muscle strength of the affected limb is 

usually weak during the initial stage of rehabilitation. In addition, patients who suffer from long-

term lower limb dyskinesias, their muscles, tendons and bones are all susceptible to secondary 

injuries in the early stages of rehabilitation training. Therefore, we propose to provide the user 

with as much scope of applications as possible. 

2.2.1 Framework functionality 

Lower limb rehabilitation training mode is divided into passive training, active training and 

resistance training. Because resistance training is mainly applied in the later stages of 

rehabilitation, and it is non-powered training, similar to fitness equipment. Therefore, this paper 
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focuses on passive training and active training. 

(1) Passive training mode: the robot controller mainly through position control, to achieve the 

exoskeleton robot to drive the affected limb to execute the pre-defined joint movement trajectory 

training mode. This mode applies to the early stage of rehab training.  

(2) Active training mode: the exoskeleton robot by acquiring the patient's motor intention. 

That is, the patient undergoes a period of MI training, such as start and stop, then the acquisition 

of EEG signals through BMI decoding and machine learning algorithms to extract a more accurate 

locomotion intent. Meanwhile, the robot receives the real-time accurate posture of the lower limb 

obtained by multi-sensor fusion of EMG sensors, pressure sensors and IMU. All these information 

form the high-level control commands of the lower limb exoskeleton rehabilitation robot, which 

are combined with the preset commands of the robot controller itself to perform the active training 

mode. This mode is suitable for the early and middle stages of rehab.  

(3) Resistance training mode: The rehabilitation device is not connected to the actuator, the 

muscle strength drives the rehabilitation device to move. This mode is usually applied in the case 

of significant improvement of muscle strength in the later stage of rehab. 

The lower limb exoskeleton rehabilitation robot based on variable parameter impedance 

controller is mainly composed of robot kinematics and dynamics modeling, impedance controller 

design and parameter tuning. The yellow blocks (see Fig. 2.1) indicate the stored files of the 

model. The blue lines represent the need for human intervention and manipulation. In this article, 

one of the main tasks is to establish the modification rules for the knee joint in gait cycle. This 

framework not only improves the rehabilitation training effect but also increases the comfort of 

the wearer and alleviates the rebelliousness of the patient. 

The predictive forward simulation module has three main data files: Model.osim, 

InitialFile.par and Measures.scone (see Fig. 2.2). The model files are the muscle-tendon geometry 

and the muscle-tendon actuated model, and the initialization files defined the initial values and 

thresholds of parameters. For instance, by changing the pelvis velocity along the x-axis direction, 

it is possible to have the model walk at different speeds. 

This framework is a clinical gait analysis using a predictive assessment approach. It has the 

advantage of not only reducing the cost of diagnosis but also allowing rehabilitation equipment to 

achieve different gait tracking trajectories based on different pathological gait. However, it is not 

accurate to reproduce pathological gait through simulation, but as a new approach to rehabilitation 

training, it can be improved with the help of the physiotherapist. At least this approach can make 

the patient feel comfortable during the rehabilitation training and also can improve the 

rehabilitation effect. 
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Figure 2.2 Flow chart of LLER robot framework based on predictive forward simulation. 

2.2.2 Intended use of the framework 

Exoskeleton robots for clinical rehabilitation are currently facing a high risk of using the 

equipment. Once a patient falls or has another accident, the health care worker may lose his or her 

career or the hospital faces the risk of huge compensation. Therefore, we refer to the Ekso[75] 

robot and make the following reference requirements for the objects to whom the framework 

applies. 

⚫ People with lower limb weakness or paralysis due to neurological disease or injury such as: 

Spinal cord injuries, stroke, Multiple Sclerosis, and Guillain Barre Syndrome. 
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⚫ Spinal Cord Injuries, Multiple Sclerosis, and Guillain Barré syndrome. 

⚫ The patient should be conscious and able to cooperate fluently with the physical therapist for 

rehab inquiries. 

⚫ Not suitable for those with emotional resistance to rehabilitation training. 

⚫ A complete evaluation and screening by a medical provider before using the device. 

⚫ Not available for patients with unresolved deep vein thrombosis (DVT). 

⚫ Not suitable for patients with severe osteoporosis. Because it can prevent safe standing or 

may increase the risk of fractures due to standing or walking. 

⚫ Not indicated for patients with uncontrolled spasticity. 

⚫ Not for patients with uncontrolled autonomic dysreflexia (AD). 

⚫ Skin integrity issues on the contact surface of the device or the prohibition of sitting need to 

be evaluated before they can be applied. 

In addition to the above requirements, when the rehabilitation robot hardware is designed at a 

later stage, the requirements should be based on the actual situation, with the aim of ensuring the 

safety of the user. 

2.3 Impedance control system for LLER robot 

The controller of the LLER robot consists of 2 parts: 1. the passive training controller of the 

LLER robot for the affected limb in the pre-rehabilitation period; and 2. the active training 

controller of the LLER robot in the mid-and late-rehabilitation period. In fact, the preliminary 

development of the active training controller for the LLER robot involved in this article only 

performs a single-step operation of the passive training controller. That is, the multi-mode 

integrated intent sensor acquires and processes the MI signal and then triggers the LLER robot 

active controller to execute one motion cycle. Therefore, for the development of the LLER robot 

controller, we focus on the passive training stage. 

Patients with lower extremity motor dysfunction due to stroke and other diseases usually carry 

out passive rehabilitation due to weak residual muscle strength in the lower extremity. This is 

characterized by the fact that the implementation of customized clinical gait analysis is necessary 

because of the wide variability of the affected limb, the emotional impact of the patient's 

rehabilitation, and other factors. After recreating the gait of the affected limb using the forward 

kinetic predictive assessment module, the patient is taken from a pathological gait and gradually 

completes rehabilitation training after the physical therapist sets the corrected offset values based 

on the rehabilitation of the affected limb. At the same time, it reduces the patient's pain during 

rehabilitation training, eliminates the patient's resistance to rehabilitation training, and also ensures 

the safety of rehabilitation training and prevents secondary injury to the affected limb caused by 

muscle strain. 

To meet these characteristics and to reduce the development cost, we developed a PD 

controller with gravity compensation. The simulation results show that the trajectory tracking can 

be basically completed, but the robustness is poor. Aiming at this problem, we then developed a 

robust adaptive PD controller, and the simulation results showed that the controller could greatly 



- 24 - 

 

improve the robustness of the system. Finally, in order to improve the human-robot interaction, we 

developed the impedance controller with variable parameters of gravity compensation, and the 

simulation results showed that the LLER robot can achieve different damping and elasticity when 

the physiotherapist sets different damping and stiffness values, so that the LLER robot can be 

more adaptable to the complex rehabilitation needs. 

2.4 Conclusion 

This chapter presents the overall framework of clinical gait analysis based on predictive 

assessment applied to the LLER robot, including the overall structure and intended use of the 

framework. The framework contains the predictive assessment module and the LLER robot 

controller. The predictive assessment module is used to reproduce the patient's pathological gait 

using forward dynamics simulation for clinical gait analysis. The assessment results could be used 

as the expected values for the LLER robot, realizing customized trajectory planning. For the 

LLER robot controller, depending on the passive training in the pre-rehabilitation period, a PD 

controller with gravity compensation, a robust adaptive controller, and an impedance controller 

with variable parameters were developed. Depending on the active rehabilitation training in the 

middle and later stages of rehabilitation training, a multimodal integrated detection module based 

on MI was developed.  
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Chapter 3. Predictive Assessment in Passive Training for 

Rehabilitation 

In the initial stage of robot-assisted rehabilitation training, the passive training modes are 

normally applied mainly due to the weak residual muscle strength of the affected limb: the 

rehabilitation robot drives the affected limb to perform constant rehabilitation movements through 

pre-set parameters. In order to develop a framework to solve the problem of obtaining adapted 

rehabilitation movements for different pathological gait patterns and to avoid secondary damage to 

the affected limb due to the excessive amplitude of non-variable passive training rehabilitation 

movements. 

3.1 Predictive Dynamics 

Although multi-parameter controllers are capable of human-like lower limb gait locomotion, 

they are highly influenced by the parameters. To produce a gait with a high degree of realism, 

Ackermann et al. [76] used a goal based on minimizing metabolic energy expenditure, thereby 

selecting the most relaxed gait for the gait task. Human or animal metabolism is estimated by 

oxygen consumption, Anderson [77] used a biologically based MTU driver to estimate metabolic 

energy expenditure. The result is a motor control optimization program that minimizes 

physiologically based goals within a parameter space limited to biologically plausible torque 

patterns. 

Musculoskeletal simulations built from experimental gait data have been used to study gait 

pathologies. For example, simulations of individuals with cerebral palsy have quantified 

individual muscle contributions to body weight support and forward propulsion [78], the mini-

mum muscle strength required to walk in a crouch gait [79], and the contributions of contracture 

and spasticity to increased hamstring resistance [39]. These studies suggest strong links between 

muscle deficits and the observed gait adaptations; however, since these studies tracked 

experimental data from patients with a combination of muscular, skeletal, and neural deficits, the 

independent effects of muscular weakness and contracture on the observed gait adaptations cannot 

be assessed. 

The goal of our work is to determine which knee gait adaptations during the gait cycle are 

caused by weakness or contracture of the HAMS, GAS and BFSH muscles. To this end, we first 

created and validated an optimization module and musculoskeletal model that could generate 

realistic motion from scratch. Our controller follows the reflection-based controller described 

previously [80][81], and the parameters of our controller are iteratively updated within the 

optimization module. 

Our framework consists of a predictive dynamic simulation and an LLER robot (see Fig. 2.2). 

Predictive dynamics use a shooting method to solve the dynamic optimization problem for 

generating a gait simulation. We implement the musculoskeletal model in OpenSim 3.3, which is 

actuated by 18 Hill-type musculoskeletal units, nine for each leg. We use an optimization and 

control framework (SCONE) to implement gait controller based on an objective function that 

sought to minimize metabolic cost, update the variable values of the optimization problem using 

the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES), then output the optimized 
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joint variables to the controller of the lower limb exoskeleton rehabilitation robot, enabling the 

sharing of parameters between the two modules. 

3.1.1 Methods 

Our optimization module used a single shooting method to solve the dynamic optimization 

problem of generating a simulation of gait. We implemented our model in OpenSim3.3 [35] and 

used an optimization and control framework (SCONE) [82] to implement the gait controller, 

perform the simulation using OpenSim as the plant, and optimize the parameters of our problem. 

OpenSim has the following functions. First, the software can calculate variables that are 

difficult to measure experimentally, such as the forces generated by muscles and the stretch and 

recoil of tendons during movement. Second, OpenSim can predict novel movements from models 

of motor control, such as kinematic adaptations of human gait during loaded or inclined walking. 

Changes in musculoskeletal dynamics following surgery or due to human–device interaction can 

also be simulated; these simulations have played a vital role in several applications, including the 

design of implantable mechanical devices to improve human grasping in individuals with paralysis. 

OpenSim is an extensible and user-friendly software package built on decades of knowledge about 

computational modeling and simulation of biomechanical systems. OpenSim’s design enables 

computational scientists to create new state-of-the-art software tools and empowers others to use 

these tools in research and clinical applications. OpenSim supports a large and growing 

community of biomechanics and rehabilitation researchers, facilitating exchange of models and 

simulations for reproducing and extending discoveries. Overall, the software (OpenSim) can 

calculate variables that are difficult to measure experimentally, such as the forces generated by 

muscles and the stretch and recoil of tendons during movement. Moreover, OpenSim can predict 

novel movements from models of motor control, such as kinematic adaptations of human gait 

during loaded or inclined walking. 

SCONE (https://scone.software) is open-source software for the predictive simulation of 

biological motion. It computes motion trajectories that perform a given task optimally, according 

to high-level objectives such as stability, energy efficiency and pain avoidance. Predictive 

simulations enable powerful new applications for musculoskeletal models, such as predicting the 

outcome of treatment and optimizing the efficiency and efficacy of assistive devices. It is a fully-

featured software framework that allows researchers to perform, analyze and reproduce custom 

predictive simulations of biological motion. 

With SCONE, users can: 

⚫ Design elaborate control strategies, using an easy-to-use custom configuration script 

(examples included). 

⚫ Optimize any set of model or control parameters, according to a user-defined objective. Out-

of-the-box, SCONE supports different flavors of Covariance Matrix Adaptation (Hansen, 

2006) for optimization. 

⚫ Use any existing OpenSim model [83] as a basis for predictive simulation. 

⚫ Add support for any third-party dynamic simulation software package, by implementing a 

thin API layer in C++. 
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⚫ Efficiently develop, optimize, and analyze predictive simulations using the SCONE user 

interface. 

3.1.2 Simulation and optimization module 

The predictive forward dynamics simulation module relies on a musculoskeletal model. The 

musculoskeletal model used for the predictive dynamic simulation is based on an adult, 1.8m 

height and 75.2kg weight, used to simulate lower limb gait. The musculoskeletal geometry uses a 

trunk and two three-segment legs (See Fig. 3.1 below for the musculoskeletal model) to represent 

the human body which is a muscle reflex model proposed by Hartmut Geyer and Hugh Herr [80]. 

The forward dynamics model of gait controller consists of 70 free optimization parameters, 16 

joint offset, four range thresholds and load thresholds for swing and stance, respectively[84]. The 

predictive optimization simulation process is shown in Fig. 3.1. The gait controller is implemented 

in SCONE, including leg states update, target features update and computation of the excitation 

signal (simulating the CNS), with output as 𝑢(𝑡 − 𝑡𝑑). Musculoskeletal model is developed in 

OpenSim 3.3, including muscle activation dynamics, muscle contraction dynamics and joint 

moments update, and forward simulation is implemented using CMA-ES to optimize the joint 

angle, angle velocity and torque of each joint, while parameters such as hip, knee, ankle and head 

stability and gait speed range from the measurement feedback are fed into the gait controller 

which formed a closed-loop control model. 

We use OpenSim3.3 to implement the development and parameterization for the 

musculoskeletal model. Then the modified model is optimized for the forward dynamics using 

SCONE. The exoskeleton robot depends on the kinematic and kinetic model of the 2-link 

humanoid model [11]. 

Neural Model 

Update leg states

Update target features 

Compute excitation signals

Muscle Activation 

dynamics

Muscle Model

Forward Simulation

Muscle Contraction 

Dynamics Model 

Update Joint 

Moments

Contact state Parameters

Pose  Parameters

Joint Torques(τ)

u1(t-td)
LM

a FM

CMA-ES 

Optimizer

Objective 

Function

Pose(θ)

Measurement Feedback

Moment arms

1−a

Contact Model

CE

PE

TendonMuscle

α

LMT

LMcos(α) LT

FT

FT

SE

Neural Delay u2(t-td)

...

 

Figure 3.1 Predictive forward module for dynamic optimization. Relationship between gait 

controller, musculoskeletal model, measurement feedback, and forward simulation. We implement 

the musculoskeletal model in OpenSim3.3 and use SCONE for the forward prediction simulation. 



- 28 - 

 

3.1.3 Musculoskeletal model 

The musculoskeletal model used for the predictive dynamic simulation is based on an adult, 

1.8m height and 75.2kg weight, used to simulate lower limb gait. The musculoskeletal geometry 

uses a trunk and two three-segment legs to represent the human body which is a muscle reflex 

model proposed by Hartmut Geyer and Hugh Herr [80]. This simulation model has been cited in 

close to 700 pieces of literature. The results of these studies proved that it is reliable. Therefore, 

this article will be based on this musculoskeletal model for subsequent modeling. Considering the 

peak isometric forces, the muscle groups with similar functions in the lower limbs were combined 

into one MTU, so we obtained 9 MTU representing each leg: gluteus maximus (GMAX), 

biarticular hamstrings (HAMS), iliopsoas (ILPSO), rectus femoris (RF), vastus (VAS), biceps 

femoris short head (BFSH), gastrocnemius (GAS), soleus (SOL), and tibialis anterior 

(TA)[85][86][87] (See Fig. 3.2). The tendon slack length for each MTU was calculated using 

experimental data [87]. A compliant contact model was used to generate forces between the 

spheres at the heel and toes of the feet and the ground plane. Previous studies in [88][89] found 

that representing muscle paths as a single line tends to overestimate length changes, so we set the 

maximum muscle fiber contraction velocity to 15 optimal fiber lengths per second (𝑙0
𝑚/𝑠). The 

tendons are modeled as nonlinear springs that generate torque when the joint is hyper-flexed or 

hyperextended. Ligaments generate torque when the hip is flexed over 120° or extended over 30°, 

the knee is flexed over 140° or extended over 0°, the ankle is dorsiflexed over 20° or plantarflexed 

over 40° [3]. 

GMAX

HAMS

BFSH

GAS

SOL

TA

ILPSO

RF

VAS

Contact ball

 

Figure 3.2 The planar musculoskeletal model of gait. 

We employ the Hill-type model [43] with three elements in each MTU model: contractile 

element (CE), parallel-elastic element (PE), and serial-elastic element (SE) (see Fig. 3.3). The 

following relations hold true for our model: 

𝐹𝑀𝑇 = 𝐹𝑇 = (𝐹𝐶𝐸 + 𝐹𝑃𝐸)𝑐𝑜𝑠𝜃 , (3.1) 

𝐹𝑇 = 𝐹𝑀
𝑜 ∙ 𝑘𝑇(𝐿𝑀𝑇 − 𝐿𝑀𝑐𝑜𝑠𝜃 − 𝐿𝑆𝑇) , (3.2) 

𝐹𝑀 = 𝐹𝐶𝐸 + 𝐹𝑃𝐸 , (3.3) 
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𝐹𝐶𝐸 = 𝐹𝑀
𝑜 ∙ 𝑎 ∙ 𝑓𝑙(𝐿𝑀) ∙ 𝑓𝑣(�̇�𝑀) , (3.4) 

𝐹𝑃𝐸 = 𝑓𝑃𝐸(𝐿𝑀) = 𝐹𝑀
𝑜 ∙  𝑀0 ∙ (𝑒휀𝑀 − 1), (3.5) 

𝑎𝑡+1 = 100ℎ(𝑢𝑡 − 𝑎𝑡) + 𝑎𝑡 , (3.6) 

Where 𝐹𝑀𝑇  , 𝐹𝑇  and 𝐹𝑀  are complete musculotendinous actuator, tendon force and muscle 

force, respectively. 𝐿𝑀𝑇, 𝐿𝑀, 𝐿𝑆𝑇 are the complete length of the model unit, muscle length and 

tendon slack length. 𝐹𝑀
𝑜  is the maximum isometric force. 𝑀0 = 0.10377, from the literature [90], 

휀𝑀 is the passive muscle strain at 𝐹𝑀
𝑜 .  Muscle excitation, 𝑢, represents the neural signals from the 

central nervous system and is a value between 0 and 1, representing the discharge rate of neurons. 

The excitation-activation model dynamic is represented by the first-order delay of equation (3.6), 

where ℎ is the step-size (1 2400⁄  s) [91] and 𝑎𝑡 and 𝑢𝑡 are the muscle activation and excitation 

dynamics. 
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TendonMuscle

θ

LMT

LM Cos(θ) LT

FT

FT

SE

 

Figure 3.3 The architecture of the adopted Hill-type muscle-tendon actuator model. PE is the 

passive elastic element, CE is the muscle contractile element, and SE is the serial-elastic element 

that represents the tendon. 𝐹𝑇  is the complete musculotendinous actuator. 𝐿𝑀𝑇 ,  𝐿𝑀 , are the 

complete length of the model unit and muscle length. 

The model used the time delay (𝑡𝑑) parameters of [92]. For all positive feedback and PD 

control laws, the initial time delay parameters are 5𝑚𝑠 for hip, 10𝑚𝑠 for knee, 20𝑚𝑠 for ankle, 

respectively. For F- law acting on the soleus (SOL), the time delay parameter is 40𝑚𝑠. Muscle 

activation, 𝑎, and muscle excitation are represented by the differential equation (3.4), where ℎ is 

the step size (1 2400 𝑠⁄ ), 𝑎𝑡 and 𝑢𝑡 denote the muscle activation and excitation values at the 𝑡-th 

timestep. The relationship between muscle force-muscle fiber length, 𝑓𝑙(𝐿𝑀) , and muscle force-

muscle fiber length velocity, 𝑓𝑣(�̇�𝑀), is based on the relevant conclusion of [12][93] (see Fig. 3.4). 

The x-axis is 𝐿𝐶𝐸 𝐿𝑀
𝑜𝑝𝑡⁄  and 𝑉𝐶𝐸 𝑉𝑚𝑎𝑥⁄  respectively, 𝐿𝑀

𝑜𝑝𝑡
 is the optimal fiber length parameters. 

The force generating capacity of a muscle is dependent on the length of muscle fibers (force-

length relationship) and the velocity of muscle fibers (force-velocity relationship). The force-

length curve shows that muscles can generate force more efficiently near 𝐿𝑜𝑝𝑡, and the force-

velocity curve shows that muscles lose ability to generate force as the magnitude of contraction 

velocity increases. In other words, the muscles are suitable for low speed situations and produce 

strong muscle forces. 

The gait cycle is divided into five states, forming five transitions (see Fig. 3.5), and the total 

lower limb joint moment in the sagittal plane for each state is obtained by summing the 



- 30 - 

 

contributions of all relevant muscles for each state. Taking the mid-stance phase as an example, 

the joint moments for each joint are: 

𝜏ℎ𝑖𝑝 = 𝜏𝐺𝑀𝐴𝑋 + 𝜏𝐻𝐴𝑀𝑆
ℎ𝑖𝑝

− 𝜏𝐼𝐿𝑃𝑆𝑂 , (3.7) 

𝜏𝑘𝑛𝑒𝑒 = 𝜏𝑉𝐴𝑆 − 𝜏𝐻𝐴𝑀𝑆
𝑘𝑛𝑒𝑒 − 𝜏𝐺𝐴𝑆

𝑘𝑛𝑒𝑒 , (3.8) 

𝜏𝑎𝑛𝑘𝑙𝑒 = 𝜏𝑆𝑂𝐿 − 𝜏𝑇𝐴 − 𝜏𝐺𝐴𝑆
𝑎𝑛𝑘𝑙𝑒 , (3.9) 

where the moment that makes the joint angle larger is positive. HAMS and GAS are biarticular 

muscles. Muscles of the legs include Slow-twitch fibers and fast-twitch fibers. Among them, slow-

twitch muscles use energy slowly and fairly evenly to make it last a long time. This helps them 

contract for a long time, without running out of power. Fast-twitch fibers use up a lot of energy 

very quickly, then get tired and need a break. On average, people have about 50% slow-twitch and 

50% fast-twitch fibers in most of the muscles used for movement. The slow-twitch ratios of the 12 

muscle models of the lower limbs are determined according to the literature [3]. Slow-twitch 

ratios are used in the measurement files as the feedback ratios. 

   

Figure 3.4 Muscle force-length, 𝑓𝑙(𝐿𝑀), and force-velocity, 𝑓𝑣(�̇�𝑀), curve used in model. 

OpenSim is a dynamic simulation software used to build and analyze locomotion [4]. The 

software generates muscle-driven simulations of object motion by the following steps: input the 

dynamic musculoskeletal model, the experimental kinematics, and the experimental reaction 

forces and moments obtained from the subject. Among them, the dynamic musculoskeletal model 

is actuated using the Hill-type model. Ong, Carmichael F. et al [5] used OpenSim to model a 

normal human: they collected kinematic and force feedback data from the subject and 

implemented the modeling through the following steps: 

a. Experimental kinematics is used to scale the musculoskeletal model to match the dimensions 

of the object. 

b. Solving the inverse kinematics (IK) problem to find the model joint angles that best 

reproduce the experimental kinematics. 

c. A residual reduction algorithm (RRA) is used to refine the model kinematics to be more 

dynamically consistent with the experimental reaction forces and moments. 

d. A computational muscle control (CMC) algorithm is used to find a set of muscle excitations 
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that will generate forward dynamic simulations that closely track the object's motion. From 

this, slow-twitch ratios were determined for 12 muscle models of the lower limbs, as shown 

in Table 3.1. 

Table 3.1 Slow-twitch ratio of various muscles in the Hill-type activation model. 

No. Muscle Slow-twitch ratio 

1 hamstrings 0.499 

2 bifemsh 0.529 

3 glut_max 0.55 

4 iliopsoas 0.5 

5 rect_fem 0.387 

6 vasti 0.484 

7 gastroc 0.546 

8 soleus 0.759 

9 tib_ant 0.721 

10 ercspn 0.6 

11 intobl 0.56 

12 extobl 0.58 

Peak isometric forces were based on a previous musculoskeletal model[94], whose muscle 

volumes were based on young, healthy subjects[95]. The tendon strain at peak isometric force was 

4.9% [94] for all muscles except for the plantar-flexors, whose values were set to 10% [96].  

Table 3.2 Muscle parameters for the unimpaired musculoskeletal model. 

Muscle 

name 

Maximum 

isometric force 

(𝑭𝑴
𝒐 )* [N] 

Optimal 

fiber length 

(𝑳𝑴
𝒐𝒑𝒕

)[m] 

Muscle 

passive 

parameters 

(𝒌𝑻, 𝜺𝑴)** 

Maximum fiber 

contraction 

velocity [𝑳𝑴 𝒔⁄ ] 

Tendon 

slack length 

(𝑳𝑺𝑻)[m] 

Muscle path 

from [97] model 

ILPSO 2697 0.117 (5, 0.6) 15 0.130 psoas 

GMAX 3338 0.157 (5, 0.6) 15 0.048 gluteus maximus 

RF 2192 0.076 (9, 1.0) 15 0.346 rectus femoris 

HAMS 4105 0.069 (5, 0.8) 15 0.349 semimembranosus 

VAS 9594 0.099 (9, 1.0) 15 0.102 vastus intermedius 

BFSH 557 0.11 (5, 0.6) 15 0.117 
biceps femoris 

short head 

GAS 4691 0.051 (5, 0.6) 15 0.384 
medial 

gastrocnemius 

TA 2117 0.068 (5, 0.6) 15 0.238 tibialis anterior 

SOL 7925 0.044 (5, 0.6) 15 0.244 soleus 

*Maximum isometric force is based on a specific tension of 60 𝑁/𝑐𝑚2.  

**𝑘𝑇 is the exponential shape factor for the passive force-length curve.  휀𝑀 is the passive muscle strain 

at 𝐹𝑀
𝑜  [98]. 

The tendon slack length of each muscle was calculated based on experimental data [87]. We 
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set maximum muscle fiber contraction velocity to 15 optimal fiber lengths per second as used in 

the literature [96] because models that represent muscle paths as a single line tend to overestimate 

length changes [89]. All muscle-tendon parameters are based on [97] and summarized in Table 3.2. 

3.1.4 Gait controller 

Our control laws for the actuators are based on the muscle-reflex controller introduced by 

Geyer and Herr [80]. Gait forward dynamics are actuated by the high-level state machine and the 

low-level control laws. The high-level state machine consists of five states, early stance (ES), mild 

stance (MS), pre-swing (PS), swing (S), and landing preparation (LP) respectively. Five transitions 

are generated between the five states, where the transitions associated with landing and standing 

are determined by comparing the ground reaction force of the ipsilateral foot to the threshold. In 

contrast, the transitions related to swing are determined by comparing the horizontal distance of 

the ipsilateral foot from the pelvis to the threshold. The five transitions are ES to MS, where the 

horizontal distance between the ipsilateral foot and the pelvis is less than the threshold; PS to S, 

where the ground reaction force of the ipsilateral foot is below the threshold; S to LP, where the 

horizontal distance between the ipsilateral foot and the pelvis is greater than the threshold; LP to 

ES, the ground reaction force of the ipsilateral foot is greater than the threshold; MS to PS, which 

is not controlled by the free parameter, occurred when the contralateral leg entered the ES 

state[21,22]. These conditions help the model to accurately execute the corresponding control 

program modules in GaitController.scone. 

The gait controller combines state machines and low-level control laws to determine the 

excitation, using the right leg as an example (see Fig. 3.2). The state machine has two states in 

stance: early stance (ES), mid stance (MS), and three states in swing: pre-swing (PS), swing (S), 

and landing preparation (LP). The transition for each state is determined by the activation of the 

low-level control law. The low-level control laws include signal constants, feedback based on 

muscle length, muscle velocity and muscle force, and PD control based on pelvic tilt angle. The 

positive and negative feedback is denoted by (+) and (-), respectively. All feedback laws based on 

muscle states acted upon the same muscle, except for a negative force feedback from the soleus to 

the tibialis anterior. The model’s 18 skeletal-muscle-tendon actuators are gluteus maximus 

(GMAX), biarticular hamstrings (HAMS), iliopsoas (ILPSO), rectus femoris (RF), vastus (VAS), 

biceps femoris short head (BFSH), gastrocnemius (GAS), soleus (SOL), and tibialis anterior (TA) 

[85][86][87]. 
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Figure 3.5 The gait controller combines state machines and low-level control laws to determine 

the excitation, using the right leg as an example. 
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In the low-level control laws, given the muscle-tendon model 𝑴𝑻 , the positive force 

feedback law, positive length feedback law, positive length velocity feedback law and Muscle-

driven PD control law are defined as[3] 

𝑢𝐹± = ±𝐾𝐹±�̃�𝑀𝑇(𝑡 − 𝑡𝑑), (3.10) 

𝑢𝐿+ = 𝑚𝑎𝑥(0, 𝐾𝐿+[�̃�𝑀(𝑡 − 𝑡𝑑) − 𝐿0]) , (3.11) 

𝑢𝑉+ = 𝑚𝑎𝑥 (0, 𝐾𝑉 [�̃̇�𝑀(𝑡 − 𝑡𝑑)]) , (3.12) 

𝑢𝑃𝐷 = 𝐾𝑃[𝜃(𝑡 − 𝑡𝑑) − 𝜃0] +𝐾𝑉[�̇�(𝑡 − 𝑡𝑑)] , (3.13) 

where �̃�𝑀𝑇(𝑡 − 𝑡𝑑) , �̃�𝑀(𝑡 − 𝑡𝑑) and �̃̇�𝑀(𝑡 − 𝑡𝑑) are the 𝑀𝑇 model force normalized by 𝐹𝑀𝑇 , 𝐿𝑀 

and �̇�𝑀 with a time-delay of 𝑡𝑑, respectively. 𝐾𝑃, 𝐾𝑉, 𝜃, are proportional coefficients, differential 

coefficients and joint angles of the PD controller, respectively. PD controller is to ensure the 

stability of the controlled joint movement. Note that �̃�𝑀𝑇 cannot increase indefinitely since the 

muscle's force generation capacity depends nonlinearly on the length and contraction velocity of 

the muscle fiber. As �̃�𝑀𝑇 starts to decrease due to muscle physiology, 𝑢𝐹± starts to decrease as 

well. The force feedback is the main source of activation to the GAS, TA, and SOL muscles 

during the stance phase (see Fig. 3.5). 

As to the relationship between muscle activation and fiber length, we illustrate it with the 

GAS as an example. Fig. 3.6 shows the activation and fiber length of GAS during the gait cycle. 

Note the nonlinearity of the activation curve generated by the linear force feedback control law. 

While the foot is flat on the ground during mid-stance, GAS activation does not significantly 

change the fiber length, and force feedback leads to an activation build-up. As the heel loses 

contact during late-stance, the fiber rapidly shortens and reduces 𝑓𝑙 and 𝑓𝑣 (see Fig. 3.4). As the 

generated force decreases, the same force feedback leads to a drop-off in activation. We can see 

that positive feedback is generated during mid-stand (starting from 30% of the gait cycle) when 

muscle activation does not produce a significant change in muscle fiber length as the foot is on the 

ground. As the heel loses ground contact in late stance (starting from 50% of the gait cycle), the 

same muscle activation rapidly shortens the fiber length, which reduces force output and the 

activation through 𝑢𝐹
𝐺𝐴𝑆. 

The objective function, 𝐽, quantified high-level tasks of walking: 

𝐽 = 𝜔𝑐𝑜𝑡𝐽𝑐𝑜𝑡 + 𝜔𝑠𝑝𝑑𝐽𝑠𝑝𝑑 + 𝜔ℎ𝑒𝑎𝑑𝐽ℎ𝑒𝑎𝑑 , (3.14) 

The goal is to minimize the gross cost of transport (𝐽𝑐𝑜𝑡) within the specified speed (𝐽𝑠𝑝𝑑), 

while ensuring head (𝐽ℎ𝑒𝑎𝑑) stability. To balance the competitive objectives, the weights were 

manually adjusted to the following values[3]: 𝜔𝑐𝑜𝑡 = 1𝑘𝑔/𝐽 , 𝜔𝑠𝑝𝑑 = 10000𝑠−1 , 𝜔ℎ𝑒𝑎𝑑 =

0.25𝑠3/𝑚2. These weights determine the priority of the solution, that is, the contribution of the 

𝐽ℎ𝑒𝑎𝑑  term is greater than the contribution of 𝐽𝑠𝑝𝑑 , while ensuring that 𝐽𝑐𝑜𝑡  is minimal. The 

relevant procedures are defined in the Measures.scone file shown in Figure 3.7. 
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Figure 3.6 Effects of muscle physiology on activation illustrated by GAS activation and 

normalized fiber length in gait cycle.  

In this article, we first particularly focus on the effect of BFSH on the gait posture during the 

gait cycle. As seen in Figure 3.5, the BFSH is mainly activated in swing state of the gait cycle. To 

implement the predictive simulation for healthy gai, the delay time (𝑡𝑑) of BFSH is defined 10ms 

for gait controller initialization, and the relationship between the excitation (𝑢) of the central 

nervous system and the activation (𝑎) of the BFSH muscle model in gait cycle is shown in Figure 

3.7. The model is represented by a first-order delay. The model used the time delay ( 𝑡𝑑 ) 

parameters of [92]. For all positive feedback and PD control laws, the initial time delay 

parameters are 5𝑚𝑠 for hip, 10𝑚𝑠 for knee, 20𝑚𝑠 for ankle, respectively. For F- law acting on 

the soleus (SOL), the time delay parameter is 40𝑚𝑠. In the initialization of this Figure, 𝑡𝑑 =

10𝑚𝑠. 
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Figure 3.7 Activation dynamics of the BFSH model in healthy gait cycle transforms the neural 

excitation (𝑢) into the muscle activation (𝑎).  
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3.1.5. Generation of gait simulations 

The predictive forward simulation module has three main data files: Model.osim, 

InitialFile.par, Measures.scone (see Fig. 2.2). The model files are the muscle-tendon geometry 

and the muscle-tendon actuated model, and the initialization files defined the initial values and 

thresholds of parameters. For instance, by changing the pelvis velocity along the x-axis direction, 

it is possible to have the model walk at different speeds. Hence, the model speed range can be 

changed in the Measures.scone file, which can be optimized based on the parameters, and the 

model can self-adjust the speed. The file Model.osim is modified in OpenSim 3.3, and all other 

components are called and executed in SCONE. InitialFile.par stored 90 free parameters, due to 

the CMA-ES of gait controller may take tens of hours to optimize the new model, hence, we 

perform pre-optimize before optimizing, and use the optimized parameters as the InitialFile.par 

for the new model, and the result show that it dramatically reduced the optimization scope and the 

optimization time. 

The model files included gait controller file, the initialization files and the measures file, 

where the model files are the muscle-tendon geometry and the muscle-tendon actuated model, and 

the initialization files defined the initial values and thresholds of parameters (i.e., by changing the 

velocity of the pelvis along the x-axis direction, it is possible to realize the model walking at 

different speeds. Therefore, it is possible to change the speed range of the model in the 

Measures.scone file, which could be optimized according to the parameters, and the model can 

enable self-adjustment of the speed). The files required for each process of the predictive dynamic 

simulation module are shown in Figure 3.8. 
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Figure 3.8 Flowchart illustrating the forward dynamics component in OpenSim and SCONE. 

3.2 Experiment design 

To explore the influence of the lower limb muscles on the knee joint during the gait cycle, we 

systematically and independently studied the relationship between the influence of each muscle 

group on the knee joint. Combined Figure 3.5 shows that the BFSH muscle mainly influences the 

knee joint flexion during the swing phase. Therefore, we first independently studied the influence 

of the BFSH muscle on the knee joint during the gait cycle, especially during the swing phase. 

Then, we systematically investigated the effects of HAMS, GAS and BFSH on the knee joint 

during the gait cycle and qualitatively gave the magnitude of the effects to provide a foundation 

for the subsequent development of modified rules for the predictive model. For subsequent 

modification of the model to achieve the reproduction of diseased gait according to the knee joint 

motion pattern in specific diseased gait. 
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3.2.1 Pathological knee gait caused by BFSH muscle contracture or muscle weakness  

According to the forward predictive simulation module (Fig. 3.1), we proceed to analyze the 

BFSH muscle of the lower extremities in contracture and muscle weakness, respectively.  

Following experimental observations, the sensitivity for the effect of BFSH contracture or 

muscle weakness on knee flexion was weaker for the former than the latter. In which, we modify 

the BFSH’s optimal fiber length in model.osim (see Fig.3.8) to 85%, 70% and 55% of its original 

value when modeling the BFSH muscle contracture, and modify the BFSH’s max-isometric force 

to 25%, 12.5% and 6.25% of its original value when modeling the BFSH muscle weakness, 

denoting mild, moderate, and severe, respectively [3]. 

3.2.2 The effects of muscle group synergy in gait cycle related to knee joint motion  

The previous results gave us confidence in the forward predictive model. We then used the 

module to study how the HAMS, GAS and BFSH muscle groups act on the knee joint in gait 

cycles under contracture or muscle weakness. We modified the optimal fiber lengths of the HAMS, 

GAS, and BFSH muscles in the musculoskeletal model to 85%, 70%, and 55% of their original 

value, respectively, represented by mild, moderate, and severe degrees of contracture. Similarly, 

we modified the maximum isometric forces of these three muscle groups to 25%, 12.5%, and 6.25% 

of their original value, respectively, and expressed them as mild, moderate, and severe muscle 

weakness, respectively. 

3.3 Validation 

3.3.1 Validating the model’s gait over a range of speeds 

We validated our results within a defined range of walking speeds and self-selected speeds; 

this step was necessary because low gait speeds are commonly observed in patients with gait 

dysfunctions. We validated the ability of the predictive forward model and applied the 

optimization module to capture the walking trends at four different speeds: three prescribed speeds 

0.6 m/s, 1 m/s and 1.4 m/s, and a self-selected speed. Individual comparisons of each speed with 

the experimental data of Schwartz et al [101] are (see Fig. 3.9). Their findings have been cited in 

close to 500 pieces of literature. And a large number of results have proved that the experimental 

results of Schwartz et al [101] are reliable. Therefore, this article will subsequently verify the 

results of our simulation module based on this experimental data. We provide all optimization 

results in the supplement " Predictive optimization results.rar ". The simulated kinematic and 

kinetic adaptations, and joint angles matched the trends observed in the experimental data [101] 

[102]. 
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Figure 3.9 Validating the model’s gait over a range of speeds. Three prescribed speeds 0.6 m/s 

(red), 1 m/s (blue) and 1.4 m/s (green), and a self-selected speed (black) were analyzed. Joint 

angles for the hip (A), knee (B), and ankle (C) were plotted. Positive joint angles indicate flexion. 

Simulated kinematics and kinetics are compared with the experimental data (gray area) collected 

by Schwartz et al [101]. 

The optimized gait generated by walking at a constant speed of 0.6 𝑚/𝑠 had significantly 

larger hip and knee angles in the late swing phase. At the prescribed speed of 1 𝑚/𝑠, the hip and 

knee angles were essentially the same as the self-selected speed in gait cycle, but in the pre-swing 

phase, the knee angles were smaller compared to the experimental data. With the prescribed speed 

of 1.4 𝑚/𝑠, the hip joint angle was out of range in the pre-swing phase and the knee joint entered 

flexion earlier, indicating that the optimized gait speed was increased.  

Overall, the generated optimized gait for walking at a constant speed of 0.6 𝑚/𝑠 exhibited 

greater angles at the hip, knee, and ankle joints than the other three speed patterns in gait cycle. 

The self-selected speed was the optimized gait generated by setting the initial speed in the range of 

(0.5-1.5 𝑚/𝑠). The trend for the self-selected gait was most similar to the prescribed speed of 1 

𝑚/𝑠. In addition, the ankle joint of our model showed a significant early entry into dorsiflexion 

compared to the experimental data. However, this section mainly focuses on finding the impacts 

of HAMS, GAS and BFSH on the knee joint. Therefore, it has no influence on the subsequent 

study. This indicates that the magnitude of the prescribed speed is not necessarily related to the 

change of each joint angle in the optimized gait. The self-selected speed could find a solution to 

the optimization module and be insensitive to the initial guesses. So, we subsequently used self-

selected speed to validate the relationship between HAMS, GAS and BFSH and the knee joint. 

3.3.2 Walking with BFSH contracture or weakness in the swing phase 

The results are illustrated in (Fig. 3.10), during walking, the BFSH muscle mainly inflicts the 

states of swing in the gait cycle. In the contracture condition (Fig. 3.10A), the knee joint angle 
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decreases approximately 20° to 25° during the swing phase, in which the contracture is severe, the 

knee joint exhibits hyperflexion throughout the gait cycle and behaves like rickets. It also leads to 

a significant reduction in walking speed. In muscle weakness (Fig. 3.10B), the knee joint angle 

decreases by approximately 10° during the swing phase. At all three severity of weakness, the 

knee joint shows significant muscle weakness, resulting in overstretching of the lower limb, which 

also leads to a significant reduction in model speed. In the case of severe contracture (Fig. 3.10C), 

the force on the knee joint is significantly increased except during the swing state, however, (Fig. 

3.10D) demonstrates that muscle weakness has no effect on knee joint force, also indicating that 

the effect of BFSH on gait mainly during the swing phase. 

 

Figure 3.10 Predictive forward simulation of gait with BFSH contracture or weakness. Compariso

ns of knee angles in one gait cycle between the normal gait and three degrees of mild, moderate an

d severe of BFSH muscle contracture (A); Comparisons of knee angles with weakness (B); Compa

risons of knee load with contracture (C); Comparisons of knee load with weakness (D). Joint load 

(BW), normalized by weight, denoted as 𝑙𝑜𝑎𝑑 = 𝑗𝑜𝑖𝑛𝑡 𝑓𝑜𝑟𝑐𝑒/(𝑚𝑜𝑑𝑒𝑙 𝑚𝑎𝑠𝑠 ∗ 𝑔). 

3.3.3 Validation for knee joint in gait cycle with muscle contracture or weakness 

The previous results gave us confidence in the forward predictive model. We then used the 

module to study how the HAMS, GAS and BFSH muscle groups act on the knee joint in gait 

cycles under contracture or muscle weakness. We modified the optimal fiber lengths of the 

HAMS, GAS, and BFSH muscles in the musculoskeletal model to 85%, 70%, and 55% of their 

original value, respectively, represented by mild, moderate, and severe degrees of contracture. The 

left column (see Fig. 3.11) shows that when different degrees of contracture developed in HAMS 

(see Fig. 3.11a), GAS (see Fig. 3.11b) and BFSH (see Fig. 3.11c), the knee joint showed 
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hyperflexion during the contact phase with the ground, and the degree of sensitivity from strong to 

weak was GAS>BFSH>HAMS. Contractures of HAMS and GAS resulted in knee hyperflexion 

during the swing phase, but it was noted that when the HAMS contracture was severe, the knee 

flexion during the swing phase was instead significantly relieved. The more severe GAS 

contracture (see Fig. 3.11b), the more severe knee flexion. The moment simulation results indicate 

(see Figs. 3.11(d)-(f)) that all three muscle contractures cause the knee torque to increase, and as 

the contracture becomes more severe, the knee torque becomes greater.  

 

Figure 3.11 Validation for knee joint in gait cycle with muscle contracture. Knee kinematics and 

kinetics with normal (red), mild (blue), moderate (green) and severe (purple) contractures in 

HAMS, GAS and BFSH, respectively, are compared with the experimental data (gray area) 

collected by Schwartz et al [101]. The gait for knee angles (left column) and knee moments (right 

column) are plotted with different severities of muscle contractures. 

Similarly, we modified the maximum isometric forces of these three muscle groups to 25%, 

12.5%, and 6.25% of their original value, respectively, and expressed them as mild, moderate, and 

severe muscle weakness, respectively. Muscle weakness in the GAS (see Fig. 3.12b) and BFSH 

(see Fig. 3.12c) muscle groups had little effect on knee flexion, but mild muscle weakness in the 

HAMS (see Fig. 3.12a) had an accelerating effect on walking speed, while moderate and severe 

HAMS muscle weakness hindered walking speed instead. The effect of muscle weakness in BFSH 

is more sensitive to the knee moment (see Fig. 3.12f): the more severe the muscle weakness of 

BFSH, the weaker the knee moment in the whole gait cycle. 
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Figure 3.12 Validation for knee joint in gait cycle with muscle weakness. Knee kinematics and 

kinetics with normal (red), mild (blue), moderate (green) and severe (purple) weakness in HAMS, 

GAS and BFSH, respectively, are compared with the experimental data (gray area) collected by 

Schwartz et al [101]. The gait for knee angles (left side) and knee moments (right side) are plotted 

with different severities muscle weakness. 

3.4 Experimental validation of muscle activation 

We performed measurements of the lower limb BFSH muscle using DTing XS01 type 

electromyographic (EMG) sensor. The experimenter was 1.72 in height and 82 kg in weight, and 

after fixing the sensor (Fig. 5A), walking in the most comfortable state and implementing the 

acquisition of measurement data. EMG sensor used DTing XS01 type, a dry electrode biosensor. 

The sampling frequency was 1000HZ, the signal-to-noise ratio was 59.5dB, the sampling accuracy 

was 12Bit, the amplification was 700 times. The EMG sensor communicated with the handheld 

device via Bluetooth in real-time to record and generated image information. DTing XS01 is easy 

to measure but not easily fixed to the skin. Therefore, we fix the sensor with nylon straps and tape 

to avoid relative displacement to the skin. The experiment was performed in continuous walking, 

with 5 complete gait cycles as a group, resting for 30s after each group, and after 10 groups were 

performed, the EMG_DATA were collated and the group with high repeatability was taken (Fig. 

5C). To obtain the EMG signal with offset, the EMG_DATA is subject to data conversion 

according to 

𝑈𝐸𝑀𝐺 = 𝐷𝐸𝑀𝐺 ∗ (1.151 ∗ 10−5) , (3.15) 
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where 𝑈𝐸𝑀𝐺 denote the voltage of the actual EMG signal, 𝐷𝐸𝑀𝐺 denote the EMG ordinate data, 

thus, the range of EMG voltage in (Fig. 3.13C) is -5.89 𝑚𝑣 to 5.89 𝑚𝑣. Based on the predictive 

forward simulation module of the lower limb BFSH muscle (Fig. 3.10), the black line is the 

simulated muscle activation, the red line is the simulated muscle excitation in gait cycle and the 

blue area is the measured EMG normalized data (Fig. 3.13B). Because the SEMG sensor is 

attached to the skin surface, it is easy to be disturbed during the experiment, which leads to some 

experimental data being unreliable. Therefore, we selected a set of data with the highest 

repeatability among the 10 sets of data, normalized them and take the average (see Fig 3.13B). 

The experimental results showed that subjects detected significant EMG signals during the swing 

phase (average range of 50%-80% of the gait cycle). It matched with the Predictive Forward 

Simulation for BFSH excitation-activation. 
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Figure 3.13 Experimental validation scheme for BFSH excitation-activation. (A) EMG sensor and 

its placement. (B) Predictive simulation module for excitation and activation, and normalized 

EMG acquisition data were averaged from the group with the highest repeatability. (C) EMG data 

acquisition at BFSH in continuous gait cycles. Muscle activation was recorded starting from >170, 

and thresholds at signal intervals of -512 to 512 were considered as muscle activation until 

sustained inactivation. 

In the gait cycle, muscle actuators are directly reflected by muscle activation on its 

surface[103]. Therefore, we collected experimental data on muscle activation in the HAMS, GAS 

and BFSH muscle groups of the normal human right leg in gait cycle.  

Considering that the intensity of muscle activation increases with exercise time, the surface 

EMG signal is enhanced. To validate the predictive assessment model for excitation-activation of 

knee motion during gait cycle, we performed the excitation-activation experiments of HAMS, 

GAS and BFSH during the gait cycle according to the experimental approach in Fig. 3.13. 

Therefore, we intercepted the EMG signals of these three muscle groups in the latter part of the 

experiment for analysis, for it was found that the cycle changes of EMG signals were relatively 
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stable in the latter part of the experiment. We then used the muscle on-off time to indicate the 

muscle activation, and compared the binarized EMG signals with simulated muscle activation 

(normal gait, self-selected speed) (see Fig. 3.14). 

The simulated muscle activity presented many of the significant features observed in the 

experiments. During early stance and landing preparation, it was the increase in body weight that 

made the HAMS very active. In mid-stance, when the knee joint needs to be driven to start flexion, 

the GAS behaves quite actively. While the swinging phase, the BFSH was active, allowing 

maximum knee flexion. There were some differences between our simulated data and 

experimental EMG, in which the activity of HAMS and BFSH during landing preparation was 

lower than the experimental data. The activation sequence of the three muscle groups also ensured 

a continuous flexion-extension of the knee joint in gait cycle. 

 

Figure 3.14 Muscle activation in normal gait at self-selected speed. 

3.5 Discussion 

On the basis of these results, we assessed the level of influence by HAMS, GAS and BFSH 

muscle groups on knee joints in gait cycle (see Table 3.3). (+) represents the enhancement effect, 

and (-) represents obstruction. The number indicates the intensity. The larger the number, the 

heavier the impact. The assessment reference value reflects the extent of impact by HAMS, GAS 

and BFSH muscle groups on knee joint in gait cycle. 

The physical therapist is able to modify the MTU parameters in the predictive forward 

simulation module referencing Table 3.3. The contracture effect of the MTU actuators is obtained 

by modifying the optimal fiber length of the muscle model, similarly, the muscle weakness effect 

of the MTU actuators is obtained by modifying the maximum isometric force of the muscle model. 

It is experimentally demonstrated that each change in MTU parameters has a different effect on 

the optimization of knee gait. Our aim is to reproduce the gait simulation of the affected limb 

using the forward predictive simulation module in order to obtain real-time data on knee joint 
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angle and knee joint moment in gait cycle. The parameters modified by the physiotherapist are 

used as the desired values for the lower limb exoskeleton rehabilitation robot controller to realize 

the robot's spatial motion to track the movement of the affected limb offline. In addition, 

physiotherapists can adjust the damping and stiffness parameters offline through the patient's 

condition, so that the robot can not only quickly follow the affected limb trajectory, but also adjust 

the damping force and stiffness force to realize active rehabilitation training or passive 

rehabilitation training. 

Table 3.3 The impact of contracture or weakness of muscle groups on knee joint in gait cycle. 

Lower limb Knee 
Contracture Weakness 

ES MS PS S LP Speed ES MS PS S LP Speed 

HAMS 

Mild 
Angle 3+ 3+ 3+ 3+ 3+ 

0 
0 0 2+ 2+ 1- 

2+ 
Moment 2+ 1+ 3+ 1- 0 1- 0 1+ 2- 0 

Mod 
Angle 1+ 1+ 2- 3+ 2+ 

1- 
0 0 0 2+ 2+ 

2- 
Moment 2+ 1+ 3+ 2- 0 2- 0 1+ 1+ 0 

Sev 
Angle 3+ 0 0 3- 2+ 

2- 
0 0 0 2+ 2+ 

2- 
Moment 3+ 1+ 3+ 1- 0 2- 0 1+ 1+ 0 

GAS 

Mild 
Angle 3+ 3+ 3+ 0 3+ 

2- 
2+ 2+ 2+ 1+ 2+ 

0 
Moment 1+ 2+ 2+ 2- 0 2+ 0 0 1- 0 

Mod 
Angle 3+ 2+ 3+ 2+ 3+ 

0 
2+ 2+ 0 1+ 2+ 

0 
Moment 2+ 3+ 2+ 2- 0 1+ 0 0 1- 0 

Sev 
Angle 3+ 3+ 3+ 2+ 3+ 

1- 
2+ 2+ 0 2+ 2+ 

0 
Moment 3+ 3+ 3+ 2- 0 1+ 0 1- 1+ 0 

BFSH 

Mild 
Angle 3+ 1+ 1+ 1- 2+ 

0 
0 0 1+ 0 1- 

0 
Moment 3+ 0 2+ 2- 0 3- 3- 3- 3- 2- 

Mod 
Angle 2+ 2+ 2+ 0 1+ 

2- 
0 0 1+ 0 0 

0 
Moment 2+ 2+ 2+ 1- 0 0 1+ 2+ 0 0 

Sev 
Angle 3+ 3+ 3+ 0 3+ 

1- 
0 0 0 0 1- 

1+ 
Moment 3+ 3+ 3+ 2- 2+ 2- 2- 1- 2- 2- 

+ represents the enhancement effect; - represents obstruction; the number indicates the intensity. 

We have shown that the musculoskeletal assessment module for the lower extremities can 

successfully predict the simulation results of gait adaptation for the BFSH muscle without tracking 

experimental data. Predicted gait adaptation was verified to be basically accurate using the EMG 

sensors. Our work aimed to obtain simulation results of pathological gait adaptation due to 

different degrees of deficiencies in the BFSH muscle through the predictive assessment module. In 

addition, the module can calculate the relevant parameters for each joint of the optimized model. 

The control protocol of the LLER robot is optimized using the parameters to obtain a personalized 

passive training mode for the rehabilitation robot. 
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Relevant anatomical studies (Glenn et al.,1996 [38]) have shown that BFSH is damaged by 

dissecting 82 consecutive acutely injured knee samples. Based on this study, we performed the 

study on the effect of BFSH on knee motion. Related research on predictive simulation (Liu et 

al.,2008 [104]; Ong et al.,2019 [3]) investigate the effect of Soleus (SOL) and gastrocnemius 

(GAS) on walking with OpenSim and found the causes of "heel-walking" gait, "toe-walking" gait. 

We were inspired to study the role of BFSH on the knee joint in gait cycle. The results showed 

that when the BFSH is severely contracted, the knee joint exhibits hyperflexion (rickets) 

throughout the gait cycle. In addition, our result shows that BFSH muscle weakness had almost no 

effect on knee joint loading; BFSH affects the gait occurred mainly in the swing phase, which also 

verified that the predicted model was accurate. 

It has been proposed in the literature [105] that heel contact on the ground and toe-off the 

ground are important for gait differentiation in gait planning for exoskeleton rehabilitation robots. 

However, the parameters of gait differentiation vary greatly from subject to subject. Our 

simulation model distinguishes the gait by the high-level state machine. In order to achieve the 

generality of the model, we do not consider heel-contact and toe-off, but only the ground reaction 

force generated when the heel landing is considered to determine the gait state. 

Our findings on the kinematic and kinetic modeling of the lower extremity robot indicate that 

the trajectories tracked are comparable to previous results (Janz et al., 2017 [105]). In contrast to 

previous studies, the robotic system involved in this thesis requires harmonic self-service motors 

to drive the hip and knee joints, respectively, while there is no kinetic design for the ankle joint. 

However, previous studies (Ong et al., 2019 [3]; Armand et al., 2016 [6]) show that in addition to 

BFSH muscle, there are hams (biartical muscle group) and gas (monoarticular muscle group), but 

the activities of the two muscle group on the knee joint not only accompanies almost the entire 

gait cycle, but also the isolation researches are complex. This is our main work in the next study. 

3.6 Conclusion 

This chapter complements the recent work by Carmichael [3], who achieved the prediction of 

gait adaptation by ankle-plantar flexor weakness and contracture. We proposed how to explore the 

effects of different muscle groups of the lower limb on the knee joint in gait cycles by means of 

predictive simulation. The final realization of clinical gait analysis using predictive forward 

dynamics is achieved. Parameters are provided for the implementation of customized training 

patterns in LLER devices. 
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Chapter 4. Motion Intent Detection Module Based on 

Multimodal Integration 

In the process of rehabilitation training for stroke patients, the rehabilitation effect is 

positively affected by how much physical activity the patients take part in. Most of the signals 

used to measure the patients’ participation are EMG signals or oxygen consumption, which 

increase the cost and the complexity of the robotic device[62]. To achieve an exoskeleton that 

provides intelligent, effective, and comfortable assistance to the wearer, it is essential to acquire 

different types of motion data from the human-exoskeleton system during movement. The 

measured motion data can be used to identify the wearer's movement intentions, analyze 

movement states and gait patterns, and evaluate motor performance. 

Biomechanical data typically associated with human movement is divided into three types: 

kinematic data, such as body posture and joint angles; kinetic data such as human joint moments, 

ground reaction forces, and wearer-exoskeleton interaction forces; and bioelectrical data, such as 

electromyography (EMG) signals and electroencephalography (EEG) signals. Different types of 

sensors are usually equipped in the exoskeleton system to measure these motion data. For example, 

encoders, potentiometers and inertial measurement units (IMUs) are typically used to measure 

kinematic data, while torque transducers are used for kinematic data acquisition. With multiple 

sensor systems in hardware and sensor fusion algorithms in the software, exoskeleton controllers 

can acquire and process motion data for motion control purposes. 

Frequently the feedback varies proportionally to the classified brain activity. Most of the BCI-

task designed for movement restoration purposes are based on MI and movement execution (ME) 

[50]. These mental/behavioral activities produce specific spatiotemporal patterns of cortical 

oscillations denoted as event-related desynchronization (ERD), and event-related synchronization 

(ERS), mainly observed over sensorimotor areas, known as sensorimotor rhythm (SMR). MI 

produces sensorimotor rhythm (SMR) activation of brain regions and spectral performance. It 

means that simple MI of the movement to be performed by the user after a few days or weeks of 

training can induce SMR modulation in cortical areas that are directly connected to normal 

neuromuscular pathways[105]. To this end, MI is considered the best strategy for natural control 

of neuro-prostheses and BCI-based rehabilitation approaches. MI has been used in the ERD/ERS 

modality to control some of the most successful BCI systems, including the approaches of 

Wadsworth[106], Berlin[107], and Graz[108]. 

4.1 Overview of detection architecture 

The multi-modal integrated intent detection module is mainly composed of the EEG system 

and the EMG system (see Fig. 4.1). Subjects were recorded by a 13-channel electrode system EEG 

system in the International 10-20 system after MI training for specific movements (such as knee 

flexion). Meanwhile, the three lower limb muscles (HAMS, GAS and BFSH) of the right leg were 

recorded using the EMG system within the same acquisition device. 
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Figure 4. 1 Schematic representation of the motion intent detection system with multi-modal. 

The EEG dataset is divided into two different datasets, namely the MI training set and the 

validation set. The data from the validation set is used to calibrate the parameters of the MI 

training classification. After pre-processing the EEG raw data, the required frequency signal is 

extracted and the trigger moment of the action signal is determined. 

Muscle activation in three regions of the right leg is acquired with the DTing XS01 dry 

electrode EMG sensor. There are three types of datasets collected by EMG: test set, training set 

and validation set. The training data set is collected during the subject's repeated training (only 

wearing the EMG) for a particular movement. The same movement, trained several times, during 

this period the collected dataset is the validation dataset. The test data set is the EMG data set 

collected after the subject wears both EEG and EMG sensors. The EMG raw data are pre-

processed to obtain muscle activation data for each muscle group. After binarizing these data, the 

control signal of the LLER robot from EMG is obtained. 

The LLER robot control signals from the EEG and EMG are decoded by fusion motion and 

then used as predictive control commands to guide the LLER robot to achieve the active training 

stage in rehabilitation. 

Passive training drives the lower limbs to perform movements, and after a period of focused 

training combined with the stimulation of HMI rehabilitation movement videos, patients are able 

to develop effective MI training. When the physiotherapist switched the rehabilitation mode of the 

LLER robot to active training mode, the patient is able to perform EEG control of the LLER robot 

as much as possible due to the long-term limb-to-cortex neural interaction activity experienced 

during passive training. In addition, the patient wears an EMG sensor system at the same time to 

correct the EEG to avoid false movements. We would like to emphasize that the active training 

mode focuses on arousing the patient's motor nervous system. Therefore, even if the multimodal 

integrated fusion module recognizes a low success rate of control intent, the physical therapist 

should provide psychological interventions to encourage the patient to complete active 

rehabilitation training. 

For the assisted rehabilitation robot [109], the different actions of the HMI and the translation 

between them are shown in Fig. 4.2. We proposed the LLER robot during the active training mode, 

which is mainly implemented to complete the start and stop commands of the LLER robot using a 



- 47 - 

 

multimodal integrated intent detection module, such as a stand and sit commands. In addition, the 

patient is given the HMI rehabilitation training video corresponding to the training mode during 

the rehabilitation. 

Seated

Stand Up Walking

Standing

TurningSit Down
 

Figure 4. 2 HMI actions of the assisted LLER robot and their transformation. 

Active training mode: On acquiring motion data, an exoskeleton’s motion assistance can be 

initiated according to the wearer’s intention. As the multi-modal integrated motion intent detection 

module is applied to the active rehabilitation training model, it has the following characteristics: 

a) Patients wear the EEG device during passive training, and the relationship between patients' 

psychological state and rehabilitation effect is studied quantitatively through EEG to provide 

guidance for patients' psychological training. 

b) Since patients with lower limb movement disorders caused by stroke and other diseases have 

the possibility of motor nerve reconstruction, monitoring the patients' EEG information 

during passive training to evaluate the rehabilitation effect of passive training. 

c) After patients pass a long period of passive rehabilitation training, combining with HMI's 

rehabilitation video movement stimulation helps patients to form effective MI training. When 

switching to active training mode, patients can form effective motor commands to control the 

LLER robot through the EEG and EMG multimodal fusion system. 

4.2 Application advantages and characteristics of EEG sensors 

Currently, the main research directions of BCI include brain neural mechanism revealing, 

experimental paradigm design, algorithm iteration and interactive application research. EEG-BCI 

systems are used as a direct connection system or electronic device between the human brain and 

computer, there are three main types of EEG features measured, which are based on Event-related 

Potentials (ERP) brain-machine interface, Steady-State Visual Evoked Potentials (SSVEP) brain-

machine interface, and Motor-Imagine (MI) brain-machine interface[110]. 

ERP is used as a specific evoked potential that responds to a specific stimulus and generates a 

positive or negative deflection of voltage in the brain. One of the most-used components of such 

BCIs is the P300 potential[111]. 

SSVEP relies on a certain frequency of stimulation to produce a multiplicative response in the 

EEG signal, where the stimulus is mainly a fixed frequency flicker; while P300 is an EEG signal 

evoked due to a small probability event, where the small probability also emphasizes 

unpredictability and chance, and a positive peak in the EEG will appear 300ms after the stimulus, 
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so it is called P300 (P3) [112]. For example, the stimulus form that induces P300 looks like 

AAAAABAA, induced by that B. The stimulus form that evokes SSVEP is AAAAAAAA, evoked 

by that string of A. In addition, P300 is the response in the time domain and SSVEP is the 

characteristic in the frequency domain. 

Due to the fact that human MI has similar brain activity to real action, MI can be considered 

as an imaginary mental activity without any obvious motor action. Since Jasper and Penfield [113] 

discovered the characteristic EEG for MI activation, more and more scholars have focused on MI-

BCI-based control systems. Compared to SSVEP-BCI and ERP-BCI, which are evoked based on 

exogenous visual stimuli, MI-BCI depends on subjects' imaginary actions such as limb 

movements, whole-body activities, performing specific cognitive tasks, and relaxation, and does 

not require external stimuli (like visual stimuli). 

The spontaneous EEG signals of imagined movements can be classified as output control 

signals, namely Event-Related Desynchronization (ERD)/ Event-Related Synchronization (ERS), 

which directly reflect the mental state associated with the subject's subjective movement and 

without any external triggering factors. Based on this relationship, the subject's brain actively 

controls the amplitude of the left and right μ and β rhythms to generate multiple control 

commands for interaction with external devices. Graz [114] conducted a study of the BCI system 

first based on the task of distinguishing 3 simple limb motor images (left hand, right hand and 

right foot). Compared to SSVRP-BCI and ERP-BCI systems, MI-BCI showed shorter response 

times and higher correctness rates in behavioral subjects, but individual differences among 

subjects were significant. 

When subjects performed MI-BCI experiments, they might perform finger and arm pointing 

movements out of instinctive reactions. MI could cater to the subconscious reactions of subjects, 

which was simple and convenient to provide subjects with a high degree of freedom for control. 

Especially for people with motor disorders and motor rehabilitation, the MI-BCI system had 

incalculable research value[115]. 

According to whether there is feedback instruction, interface interaction can be divided into 

synchronous interaction and asynchronous interaction. Synchronous interaction specifically refers 

to the completion of an action and the need to get feedback before moving on to the next action. 

Asynchronous interaction refers to completing an action without getting feedback to proceed to 

the next action. Similarly, the BCI is divided into synchronous BCI and asynchronous BCI 

according to the temporal order of experimental operations[116]. 

The surface EEG is affected by mental activity and external stimuli and shows different 

frequency characteristics and spatial distribution. Based on the frequency, it can be divided into 

different frequency bands, as shown in Table 4.1. The five EEG frequency classifications are: 

⚫ 𝛿 waves are the largest and slowest waves in terms of amplitude. Delta waves may also be 

associated with pathological features such as subcortical lesions, diffuse lesions, deep 

midline lesions, and hydrocephalus in metabolic encephalopathy. 

⚫ 𝜃  waves appear during meditation or sleepiness [117] and are more frequent in young 

children. Theta wave abnormalities may indicate focal subcortical lesion disturbances. 

⚫ 𝛼 waves are seen in the posterior region on both sides of the head, so they are also called 
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"posterior dominant rhythms", and their amplitude is more pronounced on the dominant side. 

Alpha waves appear when the eyes are closed and relaxed, and disappear or diminish when 

the eyes are opened or when the mind is focused. 

⚫ 𝛽  waves represent positivity and anxiety and are often associated with locomotion. beta 

waves are small in amplitude, symmetrically distributed on both sides of the cortex and most 

obvious on the frontal side[60]. 

⚫ 𝛾 waves tend to imply the joint activity of different neurons to accomplish some higher 

functions such as cognition or locomotion[118]. 

Table 4.1 EEG frequency classification. 

Rhythm Frequency (𝑯𝒛) Amplitude (𝝁𝑽) Dominant period 

α 8-13 10-100 Awake and relaxed 

β 14-30 5-20 Thinking Activities 

θ 4-7 20-100 
Frequency of dominance during childhood. Also 

increases in adults during sleepiness. 

δ 0.5-3 20-200 Deep sleep and Infant dominance frequency 

γ 25-140 / 
Body perception and cognition, such as working 

memory, and attention [119]. 

4.3 Signal extraction and processing 

4.3.1 EEG signal detection and data processing 

Before preprocessing the raw EEG signal for analysis, MATLAB, as well as the eeglab plugin, 

need to be installed. The aim of EEG data preprocessing is to improve the signal-to-noise ratio and 

consists of the following steps. 

• Step 1. EEG raw signal acquisition. The EEG device used for our experiments is a 32-

channel device with a sampling frequency of 1KHz. In this experiment, we adopted the data 

from the 13 EEG channels (see Fig.4.3B). The object is a normal male doing repetitive squat-

stand-up movements (see Fig. 4.3A). 

• Step 2: Import the EEG raw data into eeglab.  

• Step 3: Verify the location of the channel. The position of the electrodes on the headshell can 

be changed by modifying the coordinate values of each electrode. 

• Step 4: Reject useless electrodes. In this step, we only selected the electrode data for the 13 

channels in Fig. 4.3B. 

• Step 5: Re-reference. In this step, we select two electrodes T7 and T8 near the earlobe as 

reference electrodes. 

• Step 6: Band-pass filtering. We choose the bandpass frequency interval (0.5-45Hz). 

• Step 7: Run Independent Component Analysis (ICA). 

• Step 8: Common average reference. For example, if the data acquisition for the CZ channel 

electrode fails during the experiment, the data from the CZ electrode can be replaced by 

averaging the data from multiple electrodes around the CZ in this step. 

• Step 9: Detrend and data saving. 

https://en.wikipedia.org/wiki/Working_memory
https://en.wikipedia.org/wiki/Working_memory
https://en.wikipedia.org/wiki/Attention
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The flow chart of the preprocessing and decoding algorithm (see Fig. 4.4) is a multimodal 

integrated intent detection and processing module based on the above description, combined with 

the active training of the LLER robot. To measure brain waves in the parietal lobe, we use the 

Brain vision EEG device developed by Physio-Tech. The device consists of BrainCap with 

movable electrodes, the DC amplifier, and communication cables. Among them, the electrode cap 

is 32 channels, and we selected 13 of these channels. Figure 4.3 shows the EEG electrode montage 

corresponding to the international 10-20 system with 13 electrode positions used for decoding 

analysis.  

A B

C

Amplifiers

 

Figure 4. 3 EEG acquisition equipment and experimental environment. (A) is the subject wearing 

EEG to do squat-up movement, (B) is the 13-channel electrode distribution for the international 

10-20 system, and (C) is the EEG host. 

As preparation for neural decoding, recorded EEG signals were band-pass filtered in the delta 

band (0.5–4 Hz). The filtered non-rectified signals, which are called slow cortical potentials, were 

confirmed to be particularly informative for decoding motor-related parameters [120]. In the 

experimental data preprocessing, we band-pass filtered the raw data and retained the data from 0.5 

to 45 Hz, so that the signals characterizing the motion have been preserved. To make it easier to 

implement active training of the LLER robot for intention recognition, we did a qualitative 

analysis of the EEG data collected from 13 channels, and the experimental results showed that the 

intention signals of squatting and getting up could be clearly distinguished. 
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Figure 4. 4 Flowchart of the preprocessing and decoding algorithm. 

4.3.2 EMG signal detection and data processing 

The multi-modal integrated intent recognition module aims at patients with lower limb 

dyskinesia due to diseases such as stroke. The module encourages patients to give start-up 

commands to the LLER robot through MI. With each start-up, the LLER robot executes once a 

pre-defined motor command. By continuously stimulating the patient's motor nervous system, it 

achieves an improved rehabilitation effect. However, the signal acquired by EEG is weak and 

easily disturbed by the environment such as detection equipment, interference from 

electromyographic signals (such as eye EMG signals) and the patient's emotions. Therefore, in 

addition to preprocessing the EEG signal, the raw signal also needs additional means to ensure 

that the active training mode is established to give accurate motor commands. This module 

proposes the use of EMG sensors immobilized on the surface of muscles with residual muscle 
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force. The LLER robot can only start when both EEG start command and EMG muscle activation 

command are satisfied at the same time. In this way, not only the accuracy of active training is 

improved, but also the safety of rehabilitation training is ensured. 

Assuming the BFSH muscle group of the affected limb has residual muscle strength, we 

measured BFSH’s activation using a DTing XS01 EMG sensor. We implemented measurements of 

the lower limb BFSH muscle groups using DTing XS01 type EMG sensor. The subject was 1.72m 

in height and 82 kg in weight, and after fixing the sensor, walked in the most comfortable state 

and implemented the acquisition of measurement data. EMG sensor used DTing XS01 type, which 

was a dry electrode biosensor. The sampling frequency was 1000HZ, the signal-to-noise ratio was 

59.5dB, the sampling accuracy was 12Bit, and the amplification was 700 times. DTing XS01 was 

easy to measure but not easily fixed to the skin. Therefore, we fixed the sensor with nylon straps 

and tape to avoid relative displacement to the skin (see Fig. 4.5B). The EMG sensor 

communicated with the handheld device via Bluetooth in real-time to record and generate image 

information. Subjects performed continuous up-squat movements, EMG data were collected after 

commissioning the device, and the first two up-squat cycles were recorded (see Fig. 4.5C). The 

EMG of the subject from the start of the squat to after fully rising is shown in Fig. 4.5A. 

To obtain the EMG signal with offset, the EMG_DATA in (Fig. 4.5) is subject to data 

conversion according to equation 3.15. Preventing the EMG signal from being more strongly 

expressed because of the continuous excitation of the measured muscles due to the continuous 

exercise, the experiment tended to select the assay data at the beginning of the experiment. 
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Figure 4. 5 Activation of BFSH in the right leg during rise-squat movement measured with EMG. 

(A) EMG in the first cycle, (B) EMG acquisition devices and measurement locations, and (C) 

EMG in the first two consecutive cycles. 

4.4 Experiment and validation 

4.4.1 Experimental design 

It can be easily expected that the use of the sole EMG signal is enough to achieve accurate 

decoding of gait phases in conditions where the nervous and/or musculoskeletal systems are not 

impaired [121], with respect to what could be achieved by an EEG-based classifier, thanks to its 

higher correlation with the movement. However, in order to evaluate the control commands of the 

LLER robot using the available dataset (containing EEG and EMG of healthy subjects only), we 
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performed EEG experiments of squat-rise movements on normal subjects. 

The subject wore an EEG device and did squat-up movements in cycles. Five sets of five 

squat-up cycles were performed, with about two minutes of rest between each set. We found that 

subjects began each set of experiments with more severe EEG signal interference, which we 

analyzed might be due to the psychological tension of the subjects at the beginning of the 

experiments. Therefore, after a systematic evaluation, we took the middle and latter part of the 

fourth set of experiments (18 s-40 s) and the sum of the EEG signals (0.5-45 Hz) of the 13 

channels in the time domain is shown in Table 4.2. 

Table 4.2 Action trigger time of the object in the experiment. 

Action (𝒔) 

Cycle 
Prepare for squat Full squat Prepare to stand Full stand up 

1 2.2 5.7 6.5 9.1 

2 10.5 14.2 14.7 18.2 

3 20.2 23.4 24.1 27.2 

4 30.1 33.5 34.2 36.2 

5 42.2 44.7 45.6 48.2 

The power spectral density of the 13 channels (see Fig. 4.7) indicates that the 5.9 Hz EEG 

signal is concentrated in the central and parietal regions of the cephalic shell. To be precise, this 

region contains EEG signals below 10 Hz. The result also verifies the finding of Hikaru et al.[56] 

that the activation of motor muscle synergy is decoded from slow cortical waves. The power 

spectral densities (see Fig. 4.7) also show that the signals of the 13 channels we selected are 

basically consistent with the squat-rise action. Therefore, we took the peak time of each channel to 

set the start command of LLER in active training mode. 

 

Figure 4. 6 Channel spectra and maps. 
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After pre-processing the raw EEG signal in Fig. 4.4, the data set of 13 channels (see Fig. 4.3B) 

was selected and the DC offset and normalize channels were performed again separately, and the 

results are shown in Fig. 4.8. Then the temperature clouds of the signal component distribution 

were plotted at the wave peaks for each of the 13 channels. 

The ICA weights were applied to the EEG signals coming from Step I, projecting the data into 

the independent component domain. Components that belong to stereotypical artifacts (e.g., neck 

muscles, eye movement) were rejected by back projecting the EEG signals to the original domain 

using only the components related to brain activity. 

The experimental data set of the fourth group (18s-38s) was processed using EEGLAB and 

the EEG clouds at the moments of 20.3s, 26.3s, 31.7s and 35.5s were plotted (see the bottom of 

Fig. 4.8). The results show that the data composition and distribution of each frequency band 

collected by the 13 electrodes at the EEG wave peak are basically consistent. In addition, we also 

collected EEG data at three random moments in the non-wave region, and its cloud distribution 

(see the top of Fig. 4.8) is quite different. These findings provide us the possibility to use patient 

intent to fulfill the active training of the LLER robot. 
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Figure 4. 7 13-channel EEG acquisition of time-domain data for squat-rise movements. 

4.4.2 Experimental conclusions 

After evaluating the experimental results, we took the fourth group of experimental results in 

which the subjects' emotions were relatively stable for analysis. The moments of pre-squat, full 

squat, pre-stand and full stand up were recorded separately for each movement cycle (see Table 

4.2). Meanwhile, 13 channels of EEG data sets (18 𝑠 -38 𝑠) were acquired. After processing by 
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EEGLAB, the wave peaks/several non-wave peaks of each channel were taken separately (see Fig. 

4.6) and collated as shown in Table 4.3. 

The fourth set of squat-rise movements performed by the subject (see Table 4.2) showed that 

one squat-rise cycle was approximately 7 𝑠 . The time interval between fully squatting and 

preparing to stand up is about 1 𝑠 . In the experiment, all actions of the subject were done 

completely autonomously according to the experimental requirements, so the time interval of each 

action state was different, which met the experimental design requirements of MI. 

Combining Table 4.2 and Table 4.3, the bolded data in Table 4.2 basically correspond to the 

time of the prepared squat in Table 4.3, with a maximum error of 0.9 𝑠. This result also illustrated 

that the subjects showed a significant enhancement of EEG signals in the central area of the 

cerebral cortex in preparing for squatting and fully standing, respectively, during the squat-rise 

movement. These findings provide us the possibility to implement the LLER robot in active 

training mode when the patient's intention can control the robot to perform rehabilitation 

operations. As shown in Table 4.3, the average amplitude value of the 13 channels is 2526.339 𝜇𝑉 

at the moment of the EEG wave peaks. The amplitude difference in the non-peak period is large, 

around the baseline (25 μV), which is much smaller than the amplitude of wave peaks. Therefore, 

in the subsequent LLER robot development, we will determine the threshold value for triggering 

based on the sensitivity of the MI. 

Table 4.3 Waveform amplitude at each trigger moment during EEG measurement. 

Time (𝒎𝒔) 

Channel labels 
20359 26264 31694 35493 Average 

C3 300.3401 282.5299 139.47 169.0924 297.1442 

C4 172.8691 191.1732 88.75695 81.29569 178.0316 

CZ 284.9825 278.8902 140.5478 187.032 297.1508 

FC1 301.2987 276.0055 145.8306 189.9183 304.351 

FC2 270.3384 260.1422 138.9694 159.1393 276.1964 

CP1 295.5192 283.308 144.134 181.6365 301.5326 

CP2 264.0945 265.0034 120.4776 136.9113 262.1623 

FC5 272.0109 257.6534 139.639 183.9981 284.4338 

FC6 171.1646 193.0882 111.1609 113.1349 196.1828 

CP5 116.3512 117.4331 38.65043 28.4652 100.3 

CP6 25.23418 36.90581 11.7547 12.66566 28.85345 

Sum 2474.203 2442.133 1219.391 1443.289 2526.339 

4.5 Conclusion 

This chapter proposes a human intention detection module based on multi-modal integration 

of MI. The module is used in the active training mode in the middle and late stages of 

rehabilitation training. The EEG module based on MI acquires the patient's EEG signal, which is 

corrected by EMG to drive the LLER robot to perform a complete walking cycle. In addition, the 

accuracy of the MI is enhanced by combining the continuous stimulation of the patient's brain 

with the HMI rehabilitation visual instrumentation. 
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Chapter 5. LLER Robot Modeling and Controller Design 

The human-robot system consists of an exoskeleton that works in concert with the human 

muscular and nervous systems[122]. The interaction between the exoskeleton and the human body 

determines whether the exoskeleton can perform the desired function. Researchers have tried to 

model HRI through musculoskeletal models. One attempt is to model the interaction between 

human and rehabilitation devices through musculoskeletal simulation, where parametric design 

based on musculoskeletal performance settings has been performed[123]. Exoskeleton design with 

biomechanical analysis has also been investigated on single-degree-of-freedom exoskeletons[124]. 

Human-robotic models have been developed for 2-degree-of-freedom assisted exoskeletons to 

study the effect of power assistance on muscle activity[125]. Therefore, the core problem in the 

modeling effort is to simulate: the response of the human body when subjected to external loads 

and forces/torques exerted by the exoskeleton. Our human-robot system consists of the predictive 

simulation module in Chapter 3 and the lower limb exoskeleton rehabilitation robot in this chapter. 

5.1 Control strategies for gait rehabilitation 

The control strategies of exoskeletons in gait rehabilitation can be generally divided into two 

main categories: (1) trajectory tracking and (2) assist as needed (AAN) [16]. In trajectory tracking 

control, the predefined trajectories of the lower limb joints, usually collected from normal gait, are 

used as the control objectives. The passive training in the pre-rehabilitation stage is mainly 

achieved with trajectory tracking. The active training in the middle and late stages is achieved 

through the AAN for this stage of rehabilitation training. A gravity-compensated PD controller is 

developed to achieve the requirements of LLER robot trajectory tracking. Robust adaptive 

controllers are developed to satisfy the LLER robot's resistance to external perturbations. 

Based on the above research, considering the different damping and elasticity requirements of 

the LLER robot for different affected limbs and the same affected limb at different stages of 

rehabilitation training, we developed the impedance controller based on variable parameters to 

meet the different rehabilitation requirements with the help of physical therapists. 

5.2 Mathematical Model Formulation of LLER Kinematic Analysis 

In order to construct the human-exoskeleton model, two submodules, a musculoskeletal 

model and an exoskeletal model, need to be developed. The musculoskeletal model performs 

biomechanical analysis, and the exoskeletal model performs kinematic and kinetic simulations. 

The former is presented in Chapter 3.1.3. Therefore, this section focuses on simulating the 

kinematics and kinetics of the exoskeletal model. 

Literature has suggested that physical guiding lower limb movement may decrease motor 

learning, and the patient’s effort and participation in the training, and thus may not achieve 

effective training [126]. So far, trajectory tracking control has been used mainly for the early 

rehabilitation of patients with lower limb movement disorders when muscle strength is very weak 

[127]. Based on the wearer’s intention, the exoskeleton can adjust the amount of support to be 

assisted. Therefore, the wearer will feel more comfortable when walking with the exoskeleton. 

With this controller, the exoskeleton can provide interactive robotic gait training, according to the 

wearer’s disability level and voluntary participation. The lower limb exoskeleton rehabilitation 
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robot system is a complex nonlinear highly coupled dynamic system [128]. The model of the robot 

has three parts: robot kinematics model, dynamics model and variable parameter impedance 

controller. 

Indeed, according to movement exerted on the lower limb is of small variation of acceleration 

during the rehabilitation sessions, some hypotheses were fixed, and which will be valid for all 

structures [27]: 

1) The links of the exoskeleton robot are considered to be rigid bodies. This assumption enables 

the application of the mechanical rigid body approach. As the body segments are rigid, their 

center of mass and their moments of inertia does not change during movement. 

2) The joints are assumed to be perfect mechanical connections. 

3) The actions that generate movement are localized in the joint centers. 

4) The body mass is assumed concentrated on the center of mass. 

5) To ignore artifacts soft tissue, the movement marrow masses (skin and fat) is negligible and 

does not affect the inertial properties during the execution of the movement. 

6) The joints are defined with viscoelastic behavior in anatomical axes of the joint. In addition, 

these axes are fixed, thus the translations of a bone on the other (knee) are also negligible. 

7) The muscular action is due to a single muscle group. Therefore, there are no antagonist 

muscles that oppose the movement created by the agonists. 

The LLER robot system is a complex nonlinear highly coupled dynamic system [128]. The 

model of the robot has three parts: robot kinematics model, kinetic model and variable parameter 

impedance controller. 
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Figure 5.1 Two link model for dynamic analysis of lower limb exoskeleton robot. It includes link 

lengths (𝑙1, 𝑙2), center of gravity for link lengths (𝑙c1, 𝑙c2), the approximate mass of the lower limbs 

(𝑚1, 𝑚2), the angles between the rotational point (𝑞1, 𝑞2), counterclockwise negative. 
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Planar mechanical structure with two rotating joints (see Fig. 5.1). The notation is solved by: 

for 𝑎 = 1,2, 𝑞𝑖 denotes the joint turning angle, which is also used as a generalized coordinate, 𝑚𝑖 

denotes the mass of link 𝑖, 𝑙𝑖 denotes the length of link 𝑖, 𝑙𝑐𝑖
 denotes the distance between the 

previous joint and the center of mass of link 𝑖, and 𝐼𝑖 denotes the rotational inertia of link 𝑖 about 

the axis that passes through its center of mass and points out of the thesis. We use the Denavit-

Hartenberg joint variables as generalized coordinates and thus are able to efficiently derive the 

Jacobi matrix expressions to calculate the kinetic energy as 

{
𝑣𝑐1 = 𝐽𝑣𝑐1

�̇�

𝑣𝑐2 = 𝐽𝑣𝑐2
�̇�

 , (5.1) 

with 

𝐽𝑣𝑐1
= [

−𝑙𝑐1𝑠𝑖𝑛𝑞1 0
𝑙𝑐1𝑐𝑜𝑠𝑞1 0

0 0
] , (5.2) 

𝐽𝑣𝑐2
= [

−𝑙1𝑠𝑖𝑛𝑞1 − 𝑙𝑐2𝑠𝑖𝑛(𝑞1 + 𝑞2) −𝑙𝑐2𝑠𝑖𝑛(𝑞1 + 𝑞2)

𝑙1𝑐𝑜𝑠𝑞1 + 𝑙𝑐2𝑐𝑜𝑠(𝑞1 + 𝑞2) 𝑙𝑐2𝑐𝑜𝑠(𝑞1 + 𝑞2)
0 0

] . (5.3) 

Therefore, the kinetic energy corresponding to the translational part is 

1

2
𝑚1𝑣𝑐1

𝑇 𝑣𝑐1 +
1

2
𝑚2𝑣𝑐2

𝑇 𝑣𝑐2 =
1

2
�̇�(𝑚1𝐽𝑣𝑐1

𝑇 𝐽𝑣𝑐1
+ 𝑚2𝐽𝑣𝑐2

𝑇 𝐽𝑣𝑐2
)𝑞 ̇ , (5.4) 

The angle velocity term, 𝜔𝑖 , are considered below. When expressed in the base inertial 

coordinate system, we have 

𝜔1 = �̇�1, 𝜔2 = (�̇�1 + �̇�2) (5.5) 

Since 𝜔𝑖 is aligned with the z-axis of each joint coordinate system, the kinetic energy of the 

rotational motion can be expressed as 

𝐸 =
1

2
𝐼𝑖𝜔𝑖

2 =
1

2
�̇�𝑇 {𝐼1 [

1 0
0 0

] + 𝐼2 [
1 1
1 1

]} �̇� , (5.6) 

where 𝐼𝑖 is the rotational inertia with its axis passing through the center of mass of the connecting 

rod 𝑖 and parallel to the 𝑧𝑖 axis. Construct the inertia matrix 𝐷(𝑞). To do this, we need to add two 

matrices to Eq. (5) and Eq. (8), respectively. Thus, the inertia matrix is 

𝐷(𝑞) = 𝑚1𝐽𝑣𝑐1

𝑇 𝐽𝑣𝑐1
+ 𝑚2𝐽𝑣𝑐2

𝑇 𝐽𝑣𝑐2
+ [

𝐼1 + 𝐼2 𝐼2

𝐼2 𝐼2
] , (5.7) 

{
𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 + 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽 = 𝑐𝑜𝑠 (𝛼 − 𝛽)

𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 = 1
 , (5.8) 

Equation 8 combined with the trigonometric constant Equation 9 is obtained as 

𝐷(𝑞) = [
𝑚1𝑙𝑐1

2 + 𝑚2(𝑙1
2 + 𝑙𝑐2

2 + 2𝑙1𝑙2𝑐𝑜𝑠𝑞2) + 𝐼1 + 𝐼2

𝑚2(𝑙𝑐2
2 + 𝑙1𝑙𝑐2𝑐𝑜𝑠𝑞2) + 𝐼2

 

𝑚2(𝑙𝑐2
2 + 𝑙1𝑙𝑐2𝑐𝑜𝑠𝑞2) + 𝐼2

𝑚2𝑙𝑐2
2 + 𝐼2

] , (5.9) 
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Calculating the Christoffel signs, we get 

𝐶(𝑞, �̇�) = [
−0.4�̇�2𝑠𝑖𝑛𝑞2 −0.4𝑠𝑖𝑛𝑞2(�̇�1 + �̇�2)
0.4�̇�1𝑠𝑖𝑛𝑞2 0

] . (5.10) 

The gravity moment vector 𝑔(𝑞) is given by 

𝑔(𝑞) = [
(𝑚1 + 𝑚2)𝑙1𝑐𝑜𝑠𝑞2 + 𝑚2𝑙2𝑐𝑜𝑠 (𝑞1 + 𝑞2)

𝑚2𝑙2𝑐𝑜𝑠 (𝑞1 + 𝑞2)
] . (5.11) 

The dynamic equation of the LLER robot with 2-DOF is 

𝜏 = 𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) + 𝐹(�̇�) + 𝜏𝑑 , (5.12) 

where 𝑞 ∈ ℝ2 is the angular displacement of the joint, 𝐷(𝑞) ∈ ℝ2×2 is the inertia matrix of the 

robot, 𝐶(𝑞, �̇�) ∈ ℝ2  denotes the centrifugal and Gauche forces, 𝑔(𝑞) ∈ ℝ2  is the gravity term, 

𝐹(�̇�) ∈ ℝ2 denotes the friction moment, 𝜏 ∈ ℝ2 is the control torque and 𝜏𝑑 ∈ ℝ2 is the applied 

external disturbance. Simulation parameters for the robot (see Table 5.1). 

Table 5.1 Parameters for simulation. 

 Notation Thigh(𝒊 = 𝟏) Shank(𝒊 = 𝟐) 

Length(𝑚) 𝑙𝑖  0.4 0.5 

Center of gravity length(𝑚) 𝑙𝑐𝑖 0.2 0.25 

Mass(𝑘𝑔) 𝑚𝑖 8 4 

Inertia(𝑘𝑔 · 𝑚2) 𝐼𝑖  0.32 0.2 

5.3 Reference trajectory acquisition based on predictive assessment 

For the early rehabilitation of lower limb movement disorder patients with very weak muscle 

strength, trajectory tracking control is mainly used. In order to obtain the reference trajectory, 

Emken et al [129] proposed the teach-and-replay technique to generate the reference trajectory. 

The reference trajectory was generated by replaying the recorded kinematic data. Swift et al [109] 

used a camera motion analysis system to generate reference trajectories for an exoskeleton lower 

limb gait system. However, these methods require high equipment for acquiring the reference 

trajectory and the relevant software systems are complex. In this section, we proposed a method to 

obtain the reference trajectory of an exoskeleton robot using forward dynamics (Chapter 3). 

Generally, there are two ways to perform the motion equations of gait simulation: forward 

dynamics and inverse dynamics. Inverse dynamics has been used successfully to estimate 

quantities of recorded human motion that are not directly observable, such as muscle force or joint 

torque. Even though these inverse simulations have provided useful insights into human motion, 

they rely on existing data and cannot predict new behavior. Predictive forward dynamics computes 

motion trajectories that perform a given task optimally, according to high-level objectives such as 

stability, energy efficiency and pain avoidance. Predictive simulations enable musculoskeletal 

models to powerful new applications, such as predicting the outcome of treatment and optimizing 
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the efficiency and efficacy of assistive devices[82]. 

The system adopts the positive dynamics method to realize the simulation of different 

rehabilitation training, and involves patients in controlling their own rehabilitation. The remainder 

of this thesis offers the followings: 

a. We applied SCONE to build the forward dynamic model of walking gait. After several 

iterations, we obtained the parameters of low limb joint at stabilization. More fundamentally, use 

existing models in SCONE forum, such as jumping and running models, to obtain the reference 

trajectories for the corresponding movements. 

b. We propose an impedance controller with variable parameters for LLER robot. By means 

of MATLAB simulation, comparing the trajectory tracking accuracy and real-time performance of 

lower limb exoskeleton robot, the fuzzy controller algorithm is better than the conventional PID 

control algorithm. 

The model considered here is a three-DOF for one foot (see Fig. 5.1), wearable LLER similar 

to Lokomat[64], 1-DOF for the hip joints (Flexion/extension), 1-DOF for the knee joints 

(Flexion/extension), and 1-DOF for the ankle joints (Dorsiflexion/ toe flexion). Each joint is 

independently driven by a servomotor/ball-screw assembly complete with an encoder and a force 

sensor for measuring its angular displacement and driving torque respectively [11]. 

 

Figure 5.2 Gait fitness of predicted forward dynamics. 

SCONE is open-source software for predictive simulation of biological motion. According to 

high-level objectives such as stability, energy efficiency and pain avoidance, it computes motion 

trajectories so that performs a given task optimally. In this section, the SCONE optimizer is based 

on the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) algorithm by Hansen which 

is used to establish a forward dynamic model of gait walking [82]. The parameters of 

CmaOptimizer are shown in Table 5.2. 

Table 5.2 Parameter CMA optimizer. 

Parameter Type Value Description 

Mu int 7 Mu parameter of CMA-ES. 

Lambda int 14 Lambda parameter of CMA-ES. 

Sigma double 0.100509 Initial Sigma parameter of CMA-ES. 

Window_size size_t 500 Window size used for fitness prediction. 

Max_generations size_t 1000 
The maximum number of iterations without 

file output. 
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It can be seen from Fig. 5.2 that gait walking model tends to be stable after about 30 

optimization operations, and the curve is smoother after 54 iterations. Therefore, we abort the 

optimization calculation when the optimization iteration reaches 57 times. Hence, we choose the 

optimize scenario when Gen = 54, Best = 0.716 as the research object. 

Through the simulation with ADMAS, the moment on the knee to flexion and extension is 

about 50𝑁𝑚 and the angle scope of the freedoms on the knee is about 80° in the normal walking 

[130], as shown in Table 5.3. 

Table 5.3 The lower limb of the exoskeleton’s DOF design. 

 Joints DOF the scope of freedoms 
Driving Force 

Needed 

The DOFs of 

LLER robot 

hip Flexion/extension -120°~ 65° 80N/m ~100N/m 

knee Flexion/extension (-120°~ -160°)~ 0° 45N/m ~70N/m 

ankle Dorsiflexion/toe flexion -20°~ (40°~50°) 
Spring or other 

impedance 

General biomechanical studies of walking frequently identify seven or more distinct phases of 

the human walking gait cycle[25]. To simplify the control, we divide the LLER robot into three 

discontinuous stages (see Fig. 5.3), which are represented by three different dynamic models:  

Single support: one leg is in the stance configuration while another leg is in swing.  

Double support: both legs are in stance configuration and situated flat on the ground.  

Double support with one redundancy: both legs are in stance configuration, but one leg is 

situated flat on the ground while the other one is not. 

a

b

c

d

a. b. c. d.

neek

neek 0= neek 4.22-= °

neek

neek 6.75-= °
neek 1.44-= °

neek

°
 

Figure 5.3 Knee changes in a gait cycle. 
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Using OpenSIM and SCONE, 4 characteristic moments of forward motion analysis in a 

walking cycle are predicted. The configuration diagram is shown in Figure 5.4. The knee joint 

angles of point a, point b, point c and point d are 0°, -22.4°, -75.6°, -44.1° respectively. In Fig. 5.4, 

the abscissa is time per second, the ordinate is the angle of the right knee joint, and the 

counterclockwise direction is the positive direction. 

For the simulations we used the anthropometric data of a male of 65kg with 1.7m height 

shown in Table 5.4, which is calculated according to [31]. In order to simplify the model, the 

center of gravity of the two limbs are placed at the end of each segment. According to the equation 

(6) ~ (8) and the given parameters’ values, we obtain the lower-limb dynamic equation inertia 

matrix 𝐷(𝑞), centrifugal force and Coriolis force vector matrix 𝐶(𝑞, �̇�) and gravity vector matrix 

𝐺(𝑞). 

Table 5.4 Parameters for simulation. 

 Notation Thigh(𝒊 = 𝟏) Shank(𝒊 = 𝟐) 

Length(𝒎) 𝑙𝑖  0.4 0.5 

Mass(𝒌𝒈) 𝑚𝑖 8 4 

Inertia(𝒌𝒈 · 𝒎𝟐) 𝐼𝑖  0.12 0.04 

When Gen = 54 in Fig. 5.2, the predicted value of right knee angle during walking gait (see 

Fig.5.4) is taken as the input of the LLER robot controller. 

 

Figure 5.4 Predicted value of right knee joint angle in 0-10 seconds. 

5.4 Controller for trajectory tracking model of LLER robot 

5.4.1 Development of PD controller for hip-knee robot 

When gravity and applied disturbances are neglected, independent PD control is used to 

satisfy the trajectory tracking control requirements of the robot. n-joint robot equation is 

𝜏 = 𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) , (5.13) 

where 𝐷(𝑞) ∈ ℝ𝑛×𝑛 is the definite inertia matrix and 𝐶(𝑞, �̇�) ∈ ℝ𝑛  denotes the centrifugal and 

Gauche force, 𝑔(𝑞) ∈ ℝ𝑛 is the gravity term (see equation 5.11), 𝜏 is the joint driving torque. The 

independent PD control law is 

𝜏 = 𝐾𝑑�̇� + 𝐾𝑝𝑒 , (5.14) 
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take the tracking error as 𝑒 = 𝑞𝑑 − 𝑞, and when fixed-point control is used, 𝑞𝑑 is a constant value, 

then �̇�𝑑 = �̈�𝑑 ≡ 0. This scenario applies to the LLER robot working at low speed. Here, the robot 

dynamics equation is 

𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) + 𝐾𝑝𝑒 = −𝐾𝑑𝑒 ̇ . (5.15) 

Take the Lyapunov function as 

𝑉 =
1

2
�̇�𝑇𝐷(𝑞)�̇� +

1

2
𝑒𝑇𝐾𝑝𝑒 , (5.16) 

From the positive definite nature of 𝐷(𝑞) and 𝐾𝑝 , it is known that 𝑉  is globally positive 

definite, then 

�̇� = �̇�𝑇𝐷(𝑞)�̈� +
1

2
�̇�𝑇�̇�(𝑞)�̇� + �̇�𝑇𝐾𝑝𝑒 , (5.17) 

Using the skew-symmetry of �̇� − 2𝐶, it is known that 

�̇�𝑇�̇��̇� = 2�̇�𝑇𝐶�̇� , (5.18) 

Then 

�̇� = �̇�𝑇𝐷�̈� + �̇�𝑇𝐶�̇� + �̇�𝑇𝐾𝑝𝑒 = �̇�𝑇(𝐷�̈� + 𝐶�̇� + 𝐾𝑝𝑒) = −�̇�𝑇𝐾𝑑�̇� ≤ 0 , (5.19) 

Since �̇� is semi-negative definite and 𝐾𝑑  is positive definite, then when �̇� ≡ 0, �̇� ≡ 0, and 

thus �̈� ≡ 0. Taking into equation (5.15), we have 𝐾𝑝𝑒 = 0, and then by the reversibility of 𝐾𝑝, we 

know that 𝑒 = 0. By LaSalle's theorem, (𝑒, �̇�) = 0 is the equilibrium point of global asymptotic 

stability of the controlled robot, that is, from any initial condition (𝑞0, �̇�0), we have 𝑞 → 𝑞𝑑, �̇� →

0. 

Therefore, we developed the LLER robot with equation (5.13) as the kinetic model, choosing 

the 2-joint robot system (without considering friction and disturbances). Where 𝐷(𝑞) is equation 

(5.9), 𝐶(𝑞, �̇�) is equation (5.10), and the initial angle and angular velocity of the LLER robot is 

𝑞𝑑(0) = [0.565 0.274]𝑇 (rad). The controller of the hip-knee LLER robot is implemented by 

the PD control algorithm (see Fig. 5.5). The input angle parameters, [�̃�ℎ𝑖𝑝, �̃�𝑘𝑛𝑒𝑒], are the results 

of the self-selected velocity simulation in Fig. 3.9 of Chapter 3. 
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Figure 5.5 Block diagram of the PD controller for the hip-knee LLER robot. 
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In the controller (equation 5.15), take 𝐾𝑝 = [
9000 0

0 9000
] , 𝐾𝑑 = [

1000 0
0 1000

] , the 

simulation results (see Fig. 50 and Fig. 51). The LLER robot's hip joint (see Fig. 5.6A) achieves 

the expected tracking effect after 35% of the gait cycle (see Fig 5.6B); the knee joint (see Fig. 

5.6C) achieves the expected tracking effect after 25% of the gait cycle (see Fig 5.6D). Therefore, 

without considering external interference, the PD-controlled LLER robot can achieve angle 

tracking, and this approach is suitable for the passive training session of rehabilitation training.  
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Figure 5.6 Angle tracking of the hip and knee for the robot in normal simulated gait cycle. (A) is 

the trajectory tracking of the LLER robot hip joint. (B) is the trajectory tracking error of the LLER 

robot hip joint. (C) is the trajectory tracking of the LLER robot knee joint. (D) is the trajectory 

tracking error of the LLER robot knee joint. 

The LLER robot requires a larger torque at the hip joint (see Fig. 5.7A) near 55% and 80% of 

the gait cycle, respectively. The torque required for the knee joint (see Fig. 5.7B) is greatest near 

70% of the gait cycle. This result indicates that the torque required at the hip and knee joint 
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increases with its flexion angle. 
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Figure 5.7 Torque generated by LLER robot's hip and knee in normal simulated gait cycle. (A) is 

the torque generated by the robot's hip. (B) is the torque generated by the robot's knee. 

5.4.2 Development of Robust Adaptive PD Controller for LLER Robot 

From the conclusions in Section 5.4.1, it is clear that linear PD control is the most effective 

control method for robotic systems with strong coupling and nonlinearity. However, engineering 

practice shows that linear PD control often requires a large initial output from the actuator (see 

Figure 51), and it is often impossible for the actual actuator (usually a motor) to provide excess 

initial torque. In view of this, many nonlinear PD control methods have been proposed, but 

conventional nonlinear PD controllers have only PD terms, which require still larger coefficients 

for the proportional and differential terms, and have the problem of large output torque. Jiao X et 

al.[131] proposed an adaptive robust PD control strategy to avoid the drawback of too large initial 

output torque. The controller consists of two parts: nonlinear PD feedback and compensated 

control. The robot uncertain dynamics part is compensated by an adaptive controller composed of 

a regression matrix, and a perturbation compensation term is designed according to the upper 

exact bound of the robot perturbation. The advantages of this control strategy: when the initial 

error is large, the PD feedback plays the main role to avoid excessive initial torque output through 

nonlinear PD control; when the error is small, the adaptive controller plays the main role, thus 

ensuring a good dynamic performance of the system. 

After adding the perturbation and gravity terms to the hip-knee LLER robot described by 

equation (5.9), it is 

𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) + 𝜔 = 𝜏 , (5.20) 

where 𝑞 ∈ ℝ𝑛, is the joint angle, 𝐷(𝑞) ∈ ℝ𝑛×𝑛 is the positive definite inertia matrix of the LLER 

robot, 𝐶(𝑞, �̇�) ∈ ℝ𝑛 denotes the Centrifugal and Coriolis forces, 𝑔(𝑞) ∈ ℝ𝑛  is the gravity term, 

𝜏 ∈ ℝ𝑛 is the control moment, and 𝜔 ∈ ℝ𝑛 is the external disturbance. 

According to the dynamics of the robot system: there exists a parameter vector that depends 
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on the robot parameters and makes 𝐷(𝑞), 𝐶(𝑞, �̇�), and 𝑔(𝑞) satisfy the linear relationship: 

𝐷(𝑞)𝜗 + 𝐶(𝑞, �̇�)𝜌 + 𝑔(𝑞) = Φ(𝑞, �̇�, 𝜌, 𝜗)𝑃 , (5.21) 

where Φ(𝑞, �̇�, 𝜌, 𝜗) ∈ 𝑅𝑛×𝑚, is the regression matrix of known joint variable functions, which is 

the matrix of known functions of the generalized coordinates of the robot and its derivatives of all 

orders; 𝑃 ∈ 𝑅𝑛 is the vector of unknown constant parameters describing the mass characteristics 

of the robot. Then, the parametrization of the external perturbation term 𝜔 satisfies. 

‖𝜔‖ ≤ 𝑑1 + 𝑑2‖𝑒‖ + 𝑑3‖�̇�‖ , (5.22) 

where 𝑑1, 𝑑2 and 𝑑3 are the positive constants, 𝑒 = 𝑞 − 𝑞𝑑, �̇� = �̇� − �̇�𝑑 are the tracking error and 

tracking error derivative, respectively. Introducing the variables 𝑦 and 𝑞𝑟, let 

𝑦 = �̇� + 𝛾𝑒 , (5.23) 

�̇�𝑟 = �̇�𝑑 + 𝛾𝑒 , (5.24) 

where γ ≥ 0, is a constant, gives 

𝑦 = �̇� − �̇�𝑟 , (5.25) 

For equation (5.21), taking 𝜗 = �̈�𝑟, 𝜌 = �̇�𝑟, gives 

𝐷(𝑞)�̈�𝑟 + 𝐶(𝑞, �̇�)�̇�𝑟 + 𝑔(𝑞) = Φ(𝑞, �̇�, �̇�𝑟, �̈�𝑟)𝑃 , (5.26) 

Taking equation (5.25) into equation (5.26) we get 

𝐷(𝑞)(�̈� − �̇�) + 𝐶(𝑞, �̇�)(�̇� − 𝑦) + 𝑔(𝑞) = Φ(𝑞, �̇�, �̇�𝑟, �̈�𝑟)𝑃 , (5.27) 

Combining equation (5.20) and simplifying it, we get 

𝐷(𝑞)�̇� + 𝐶(𝑞, �̇�)𝑦 = 𝜏 − Φ(𝑞, �̇�, �̇�𝑟, �̈�𝑟)𝑃 − 𝜔 , (5.28) 

For the LLER robot system, when the disturbance signal is known with upper exact bound, 

we use the following controller and adaptive law [131] to ensure the global asymptotic stability of 

the system. 

𝜏 = −𝐾𝑝𝑒 − 𝐾𝑣�̇� + Φ(𝑞, �̇�, �̇�𝑟, �̈�𝑟)�̂� + 𝑢 , (5.29) 

𝑢 = [𝑢1 ⋯ 𝑢𝑛]𝑇 ,  𝑢𝑖 = −(𝑑1 + 𝑑2‖𝑒‖ + 𝑑3‖�̇�‖)𝑠𝑔𝑛(𝑦𝑖), (5.30) 

where the parameter estimation law of �̂� is taken as: 

�̇̂� = −ΓΦ𝑇(𝑞, �̇�, �̇�𝑟, �̈�𝑟)𝑦 , (5.31) 

in which 

𝐾𝑝 = 𝐾𝑝1
+ 𝐾𝑝2

𝐵𝑝(𝑒),  𝐾𝑣 = 𝐾𝑣1
+ 𝐾𝑣2

𝐵𝑣(�̇�),

𝐾𝑝1
= 𝑑𝑖𝑎𝑔(𝑘𝑝11

, 𝑘𝑝12
, ⋯ , 𝑘𝑝1𝑛

),  𝐾𝑝1
= 𝑑𝑖𝑎𝑔(𝑘𝑝21

, 𝑘𝑝22
, ⋯ , 𝑘𝑝2𝑛

),

𝐾𝑣1
= 𝑑𝑖𝑎𝑔(𝑘𝑣11

, 𝑘𝑣12
, ⋯ , 𝑘𝑣1𝑛

),  𝐾𝑣2
= 𝑑𝑖𝑎𝑔(𝑘𝑣21

, 𝑘𝑣22
, ⋯ , 𝑘𝑣2𝑛

),

𝐵𝑝(𝑒) = 𝑑𝑖𝑎𝑔 (
1

𝛼1 + |𝑒1|
,

1

𝛼2 + |𝑒2|
, ⋯ ,

1

𝛼𝑛 + |𝑒𝑛|
) ,

𝐵𝑣(𝑒) = 𝑑𝑖𝑎𝑔 (
1

𝛽1 + |�̇�1|
,

1

𝛽2 + |�̇�2|
, ⋯ ,

1

𝛽𝑛 + |�̇�𝑛|
) , (5.32)

 

where 𝑘𝑝1𝑖
, 𝑘𝑣1𝑖

, 𝛼𝑖, 𝛽𝑖, (𝑖 = 1,2, ⋯ , 𝑛) are positive, and Γ is a positive definite symmetric matrix. 
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The stability proof of this controller is provided in [131]. Further we need to determine the 𝚽 and 

𝒚 in equation (5.31). 

For the lightweight exoskeleton robot, we assume that the center of gravity of the thank and 

the thigh exoskeleton in Fig. 5.1 is located at the joint, that is, 𝑙1 = 𝑙c1, 𝑙2 = 𝑙c2. Then, the terms 

𝐷(𝑞), 𝐶(𝑞, �̇�) and 𝑔(𝑞) in equation (5.20) can be simplified as 

[
𝐷11(𝑞2) 𝐷21(𝑞2)

𝐷12(𝑞2) 𝐷22(𝑞2)
] [

�̈�1

�̈�2
] + [

−𝐶12(𝑞2)�̇�2 −𝐶12(𝑞2)(�̇�1 + �̇�2)

𝐶12(𝑞2)�̇�1 0
] [

�̇�1

�̇�2
]

+ [
𝑔1(𝑞1, 𝑞2)𝑔
𝑔2(𝑞1, 𝑞2)𝑔

] = [
𝜏1

𝜏2
]  , (5.33)

 

In which 

𝐷11(𝑞2) = (𝑚1 + 𝑚2)𝑙1
2 + 𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2𝑐𝑜𝑠𝑞2

𝐷12(𝑞2) = 𝐷21(𝑞2) = 𝑚2𝑙2
2 + 𝑚2𝑙1𝑙2𝑐𝑜𝑠𝑞2

𝐷22(𝑞2) = 𝑚2𝑙2
2

𝐶12(𝑞2) = 𝑚2𝑙1𝑙2𝑠𝑖𝑛𝑞2

𝑔1(𝑞1, 𝑞2) = (𝑚1 + 𝑚2)𝑙1𝑐𝑜𝑠𝑞2 + 𝑚2𝑙2cos (𝑞1 + 𝑞2)

𝑔2(𝑞1, 𝑞2) = 𝑚2𝑙2 cos(𝑞1 + 𝑞2) , (5.34)

 

For the dynamic equation 

𝐷(𝑞)�̈�𝑟 + 𝐶(𝑞, �̇�)�̇�𝑟 + 𝑔(𝑞) = Φ(𝑞, �̇�, �̇�𝑟, �̈�𝑟)𝑃 , (5.35) 

In order to implement the control law equation (5.29), equation (5.30) and equation (5.31), the 

expressions for Φ and 𝑃 in equation (5.35) must be given. 

Combining equation (5.33) and equation (5.35), we get 

[𝑫(1,1) 𝑫(1,2)]�̈�𝒓 + [𝑪(1,1) 𝑫(1,2)]�̇�𝒓 + 𝒈(1)

= [𝜙11 𝜙12 𝜙13] [

𝑝1

𝑝2

𝑝3

] , (5.36)
 

[𝑫(2,1) 𝑫(2,2)]�̈�𝒓 + [𝑪(2,1) 𝑫(2,2)]�̇�𝒓 + 𝒈(2)

= [𝜙21 𝜙22 𝜙23] [

𝑝1

𝑝2

𝑝3

] , (5.37)
 

where  

𝑝1 = (𝑚1 + 𝑚2)𝑙1
2

𝑝2 = 𝑚2𝑙2
2

𝑝3 = 𝑚2𝑙1𝑙2

𝜙11 = �̈�1𝑟 + 𝑔 𝑙1⁄ 𝑐𝑜𝑠𝑞2

𝜙12 = �̈�1𝑟 + �̈�2𝑟

𝜙13 = 2�̈�1𝑟𝑐𝑜𝑠𝑞2 + �̈�2𝑟𝑐𝑜𝑠𝑞2 − �̇�2�̇�1𝑟𝑠𝑖𝑛𝑞2 − (�̇�1 + �̇�2)�̇�2𝑟𝑠𝑖𝑛𝑞2 + 𝑔 𝑙1⁄ cos(𝑞1 + 𝑞2)
𝜙21 = 0

𝜙22 = 𝜙12

𝜙23 = �̇�1�̇�1𝑟𝑠𝑖𝑛𝑞2 + �̈�1𝑟𝑐𝑜𝑠𝑞2 + 𝑔 𝑙1⁄ cos(𝑞1 + 𝑞2) , (5.38)
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where 𝑔 = 9.8, Φ(𝑞, �̇�, �̇�𝑟, �̈�𝑟) = [
𝜙11 𝜙12 𝜙13

𝜙21 𝜙22 𝜙23
], 𝑃 = [𝑝1 𝑝2 𝑝3]𝑇. 

Based on the above description, we built the robust adaptive PD control system, as shown in 

Fig. 5.8. 

Controller
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knee
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knee
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Figure 5.8 Block diagram of the robust adaptive PD controller for the hip-knee LLER robot. 

The inputs to the robust adaptive PD controller (see Fig.5.8) are the hip and knee angle, 

angular velocity and angular acceleration data from the predicted assessment results (see Self-

selected Speed in Fig. 3.9). Controller (see Fig. 5.8) is the description of equations 5.36 and 5.37 

using the S function of MATLAB. Robust adaptive law in Fig.5.8 is the description of equation 

5.31 using the S function, and LLER robot is the description of equation 5.20 using the S function. 

After simulation of this controller model, the results are shown in Fig. 5.9. 

We set the initial position of the LLER robot to be the same as the initial position of the gait 

for the prediction assessment (see Fig. 5.9). Figs. 5.9A and 5.9B show that overall the robust 

adaptive PD controller is able to achieve tracking to the expected motion trajectory of the LLER 

robot. After applying external perturbations during 50%-55% of the gait cycle, Fig. 5.9B shows 

that the trajectory tracking error of the knee increases immediately, followed by a gradual decrease 

of the error. However, the error of the hip trajectory tracking becomes smaller rapidly after 50% of 

the gait cycle instead, reflecting the good robustness of this controller. As shown in Fig. 5.9E and 

Fig. 5.9F, the velocity tracking of both the hip and knee exhibits a sharp change in velocity at the 

beginning of the gait. This is caused by the fact that the velocity of the LLER robot is changing 

from 0 although the initial angle is set to the same value as the predicted assessment. Figs. 5.9G 

and 5.9H show that the angular velocity tracking errors of the hip and knee show significant 

oscillation during the application of external perturbations. This phenomenon is caused by the 

application of external perturbations. 
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Figure 5.9 Simulation results of the robust adaptive PD controller for the LLER robot. (A) and (B) 

show the angle trajectory tracking of the hip and knee, respectively. (C) and (D) presents the angle 

tracking errors of the hip and knee, respectively. (E) and (F) are the angle velocity tracking of 

ankle and knee, respectively. (G) and (H) show the angle velocity tracking errors of hip and knee, 

respectively. 

5.5 Variable parameter impedance controller with gravity compensation 

In social applications such as elderly care, health care and human-robot collaboration, 

environments are typically unknown to robots and there exist uncertainties due to many factors. 

Therefore, control of the interaction between robots and environments is essential and there has 

been much effort made on this topic. In the literature on interaction control, two approaches are 

widely studied, i.e., hybrid position /force control [132] and impedance control [133][134]. 

Compared to hybrid position/force control, impedance control is more feasible in the sense that it 

does not require the decomposition of two directions. Besides, impedance control is preferred for 

its better robustness [135]. However, in many situations, imposing a passive impedance model on 

the robot is too conservative, and the environmental dynamics can be taken into consideration to 

obtain desired impedance model. Besides, a fixed prescribed impedance model does not suffice in 

many applications[136]. In human-robot collaboration, variable impedance control is necessary. 

The classical approach to robot control is negative feedback control with high proportional-

derivative (PD) gains. This type of control is straightforward to implement robust towards 

modeling uncertainties, and computationally cheap. Unfortunately, high-gain control is not ideal 

for many tasks involving interaction with the environment, e. g force control tasks or locomotion. 

In contrast, impedance control (Hogan 1985) seeks to realize a specific impedance of the robot, 
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either in the end-effector or joint space. The issue of specifying the target impedance, however, 

has not yet been completely addressed[137]. 

5.5.1 Variable parameter impedance controller for LLER robotics 

With impedance control, the robot is controlled to be compatible with the interaction forces 

exerted by the environment, thus ensuring the safety of the robot and the environment. Specifically, 

if the environment is also passive, imposing a passive impedance model on the robot will ensure 

interaction stability[136]. LLER human-robot collaboration is characterized by the physical 

contact between the human, the robot and its surroundings during the collaboration process, which 

in turn forms a coupled dynamic system. Therefore, our LLER robotics system has 3 metrics, 

namely: safety, collaboration and intelligence. In this thesis, we focus on safety and collaboration, 

and the intelligence of the LLER robot will be one of our main tasks in the future. 

In order to make both the hip and knee joints of the LLER robot have the dynamic properties 

of the second-order system composed of spring-damping-mass. The impedance control 

relationship is： 

𝑀𝑑�̈� + 𝐵𝑑�̇� + 𝐾𝐸 = −𝐹𝑒 , (5.39) 

where, 𝐹𝑒 represents the contact force with the environment,𝜏𝑑 = −𝐹𝑒. 𝑀, 𝐵, and 𝐾 denote the 

inertia matrix of the impedance model, damping matrix and stiffness matrix of the robot, 

respectively. 𝐸 denotes the error between the actual position and the desire position (𝐸 = 𝑞𝑑 − 𝑞), 

�̈�𝑑 ,  �̇�𝑑  , 𝑞𝑑  are the expected input angle acceleration, angular velocity and angle value, 

respectively. 

The dynamic equation of the LLER robot is 

𝜏 = 𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) + 𝜏𝑑 , (5.40) 

Where 𝜏𝑑 = −𝐹𝑒 , Combining (1) and (2), we get 

𝜏 = 𝐷(𝑞)𝑞�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) + 𝐷(𝑞)𝑀−1(𝐵�̇� + 𝐾𝐸) + (𝐼 − 𝐷(𝑞)𝑀−1)𝜏𝑑 , (5.41) 

The equation (5.41) can be obtained by taking equation (5.41) into equation (5.39) and 

multiplying both sides of the equation by 𝐷−1(𝑞) and 𝑀 respectively after eliminating the same 

term. 

The impedance control model described in equation (5.41) can achieve: a dynamic control 

relationship between the locomotion of the LLER robot and the contact forces between the robot 

and the external environment. The ideal impedance controller block diagram is shown in Fig. 5.10. 
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Figure 5.10 Schematics illustrating of ideal impedance control system for LLER robot. The input 

to the control system is the predicted joint angles and joint loads after the optimization [138]. In 

the exoskeleton robot model, we assume that the simulation parameters for the robot are Table 5.1. 

Fig. 5.10 represents the single-leg hip and knee joints both reflecting the dynamic 

characteristics of a second-order system consisting of a spring-damped-mass. 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) is 

the robot gravity compensation. However, the model for the conversion of external force to joint 

angular acceleration, (𝐼 − 𝐷(𝑞)𝑀𝑑
−1)𝐹𝑒𝑥𝑡 (see red dashed area in Fig. 5.10), requires real-time 

feedback sensors for joint moments to be installed in each joint of the rehabilitation robot to 

achieve its goals, which also makes the design of the rehabilitation robot more difficult.  

In addition, the system needs to provide accurate stiffness matrix for robot dynamics and 

stiffness matrix for impedance controller. However, for different affected limbs, this problem is 

difficult to solve and can cause instability for the system due to the strong coupling of the second-

order terms. Therefore, based on this system, we designed the PD-based impedance control system. 

Considering that the LLER robot we developed is mainly used in the passive training stage of 

the affected limb initial training. Owing to the gentler training in this period and the relatively 

small joint angular acceleration, the inertia term in the impedance model is considered to be 

equivalent to the inertia term in the kinematic model, which eliminates the torque feedback term. 

With this processing, our impedance model is simplified to a first-order PD-based impedance 

control system (see Fig. 5.11). Although the PD impedance control system theoretically causes an 

increase in the error between the actual and desired values, the error can be eliminated by 

adjusting the offset values, considering that each joint parameters obtained from the forward 

simulation module require the physiotherapist to adjust the offset values according to the affected 

limb rehab course. 

The red dashed area (see Fig.5.10) in the impedance control block diagram indicates the 

torque feedback. Because the application scenario of our framework is a low-speed and gentle 

rehabilitation movement. It is difficult to obtain real-time feedback of the LLER robot joint torque, 

special torque sensors or predictive calculations of the joint motor current are required. Therefore, 

the inertia matrix of the impedance control is taken as the inertia matrix of the robot, 𝐷(𝑞) = 𝑀, 

then equation (5.41) is simplified as 
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𝐷(𝑞)�̈� + 𝐵�̇� + 𝐾𝐸 = 𝜏𝑑 , (5.42) 

To simplify, let �̈�𝑑 = 0 , �̇� = 0  and equation (5.42) obtains 

𝜏 = 𝐶(�̇�, 𝑞)�̇� + 𝑔(𝑞) − 𝐵𝑑�̇� + 𝐾𝑑�̇� , (5.43) 

After the above simplification, the impedance control model of LLER still has impedance 

characteristics to the external environment. However, when the acceleration of the joint is large, 

the result will have a large error with the set value. 
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Figure 5.11 Architectural framework of variable impedance PD controller based on predictive 

assessment. The inputs to the control system are optimized predicted joint angles and joint loads 

with offset values set by the physiotherapist [138]. In the exoskeleton robot model, we assume that 

the masses, lengths and momentum of Inertia for shank and thigh are 8𝑘𝑔 , 0.5𝑚 and 0.4𝑘𝑔𝑚2, 

respectively. 

The red dotted box (see Fig. 5.11) shows the exoskeleton robot hip and knee joints both 

applying the impedance control of equation (5.43). The variable impedance controller in the black 

dotted box (see Fig. 5.11) allows the physiotherapist to adjust the impedance parameters 𝐾𝑑 and 

𝐵𝑑 according to the rehabilitation training needs. For example, the physiotherapist can increase the 

damping coefficient when active training of the affected limb is required, and similarly, the 

elasticity coefficient can be increased when the robot is required to drive the affected limb for 

passive training. The rules for determining the impedance parameters will be investigated in our 

next work. 

5.5.2 Simulation of LLER robot knee joint tracking with impedance controller based on 

variable parameters 

We developed a dynamics model for the LLER robot (see equation 5.12) and a PD-based 

impedance control system (see equation 5.43) using MATLAB's S-function (MathWorks, Natick, 

Massachusetts, USA). Meanwhile, a sinusoidal external disturbance force with a gain of 300N was 

applied to the model in SIMULINK during 25% to 30% of the gait cycle to validate the model's 

robustness. We selected the predicted optimized simulation data for the two scenarios where the 

variance in knee angle changes in gait cycle is the sharpest: severe contracture and severe muscle 
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weakness, to validate the knee angle trajectory and torque tracking effect of the rehabilitation 

robot system. We need to emphasize that the purpose of the predictive assessment module is to 

form a new clinical gait analysis approach by reproducing the pathological gait through forward 

predictive simulation, where the acquired joint parameters are evaluated by the physiotherapist 

and set appropriate offsets as desired parameters for the rehabilitation robot to guide its operation. 

In addition, the PD-based impedance model allowed to tune the damping or stiffness values 

according to the rehabilitation training requirements to achieve the elasticity effect or the tracking 

effect of the robot. 

The initial state of the robot knee joint is stationary, the top row (Fig. 5.12) knee angle 

trajectory tracking in the early stage of gait, the robot can follow to the desired value within 5% of 

the gait cycle. It is also observed that the larger stiffness value makes the angular trajectory 

tracking of the system significant, and only in the swing phase the robot has some lags. In the 

bottom row (Fig. 5.12) knee load tracking, in the initial stage, the robot needs a large torque to 

start the robot knee joint, which is also in line with the practical experience. In addition, the load 

tracking effect deteriorates in both validation scenarios when external force perturbations are 

applied, and our next work will consider implementing torque detection devices to solve the 

problem. 
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Figure 5.12 Knee joint angle trajectory and load tracking. The left and right columns are robot 

tracking for the forward predictive assessment of BFSH contracture severity and muscle weakness 

severity, respectively. The top row presents the robot knee trajectory tracking and the bottom row 

presents the robot knee load tracking. 

The approximate clinical gait knee flexion angle and torque parameters obtained using the 

predictive forward simulation module are used as inputs to the lower limb exoskeleton 

rehabilitation robot controller with variable impedance parameters. The input values and 

impedance parameters allowed for adjustment by the physiotherapist depending on the 

rehabilitation situation. 

We performed simulations for the variable parameter impedance controller with gravity 

compensation in MATLAB. Three sets of impedance parameters ( 𝐵𝑑 = 10𝑁𝑠/𝑚 , 𝐾𝑑 =
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5000𝑁/𝑚, 𝐵𝑑 = 50𝑁𝑠/𝑚, 𝐾𝑑 = 500𝑁/𝑚 and 𝐵𝑑 = 50𝑁𝑠/𝑚, 𝐾𝑑 = 5000𝑁/𝑚) were set and 

external sinusoidal perturbations disturbance was applied during 35%-40% of the gait cycle. The 

robot knee joint angle trajectory tracking and torque tracking in gait cycle were obtained 

separately (see Fig. 5.13). 

The simulation results show that the knee joint angle trajectory tracking and torque tracking of 

our established robot controller model are effective. When external perturbations are applied, both 

robot knee joint angle tracking and torque tracking vary greatly with different impedance 

parameters. Specifically, the large stiffness of the impedance controller makes the robot knee joint 

angle tracking excellent in real-time, and the large damping of the impedance controller renders 

the robot knee joint show more obvious elasticity when it receives external resistance. 

The knee moment for the optimized gait is consistent with the overall trend of the 

experimental data, however, between 35% and 45% of the gait cycle (from the right foot leaving 

the ground to the start of swing). It might be caused by the error between the model center of 

gravity and the normal human model center of gravity position during the motion. During 80% to 

100% of the gait cycle (from right heel touching the ground to left toe off the ground), the 

simulation deviated from the experiment, and the model trunk tilted forward prematurely. The 

knee joint angle in the optimized gait of a normal human is smaller than the experimental data in 

the stance phase. The optimized model exhibited leg stiffness in the stance phase, probably owing 

to the inadequate design of the model muscle actuators, which could not mimic completely the 

effect of human lower limb muscle groups on the knee joint. 
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Figure 5.13 Knee joint angle trajectory tracking and torque tracking. The parameters obtained 

from the uninjured walking simulation (gray area) are compared to the angular tracking (top) and 

moment tracking (bottom) of the robot knee joint with three different impedance parameters, 

Damping 𝐵𝑑 (𝑁𝑠/𝑚) and Stiffness 𝐾𝑑 (𝑁/𝑚). 
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5.5.3 Development of impedance tuning approach based on a novel PSO algorithm 

The tuning of the stiffness and damping parameters of the impedance controller involved in 

the previous section usually relies on experience, which results in low efficiency and poor 

accuracy. In the dynamic process, we are trying to develop a hybrid controller for PD impedance 

parameter optimization based on the PSO algorithm (see Fig. 5.14). Based on the mechanical 

impedance parameters of the affected limb obtained from online identification, the PSO algorithm 

is applied to dynamically tune the target impedance control parameters. The aim is to realize that 

the LLER robot can effectively adapt to the changes in the condition of the affected limb, so that 

the impedance controller can achieve better smoothness and stability. The blue area (see Fig. 5.14) 

presents setting the optimization-seeking bounds for the damping 𝐵𝑑  and stiffness 𝐾𝑑  in PSO 

algorithm to reduce the computation time and improve the optimization quality. 

PSO is a random search algorithm based on group collaboration developed by simulating 

birds foraging for food [139]. The algorithm uses the velocity-position model, and the particle 

swarm velocity-position update formula is as follows 

𝑣𝑖𝑑 = 𝑤 ∗ 𝑣𝑖𝑑 + 𝑐1𝑟1(𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2𝑟2(𝑝𝑔𝑑 − 𝑥𝑖𝑑) , (5.44) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 , (5.45) 

Where 𝑟1 and 𝑟2 are two separately generated uniformly distributed random numbers in the 

range [0,1], 𝑐1 and 𝑐2 are learning factors[140]. The algorithm repeats the velocity and position of 

the new particles according to equations (5.45) and (5.46) until the maximum number of cycles is 

reached, or a predetermined minimum fitness threshold is satisfied, at which point the result is the 

optimal solution. According to equation (5.44), the particle velocity update is mainly determined 

by three components. The first part of equation (5.44) is the inertia, which reflects the motion 

habit of the particle and represents the tendency of the particle to maintain its previous velocity. 

The second part is cognitive, which reflects the memory of the particle's historical experience and 

represents the tendency of the particle to approach the best position in its history [141]. The third 

part is social cognition, which responds to the group-historical experience of collaborative 

cooperation and knowledge sharing among particles and represents the tendency of particles to 

approach the best position in the group or threshold history. Therefore, the learning factors 𝑐1 and 

𝑐2 in PSO reflect the information exchange between particle populations [142].  

Although the PSO algorithm converges quickly and has low computational complexity, it is 

prone to diversity loss and falls into local optimum [143]. With the traditional PSO algorithm, the 

learning factor is set to 𝑐1=𝑐2=2. For the purpose of enriching particle diversity and improving the 

case of overripening and falling into local extremes, we tried to design the equal random learning 

factor improvement approach to obtain better convergence [144]. Therefore, the relatively better 

search results are selected as the random interval for the learning factor. The novel PSO is 

implemented in equation (5.44), the values of 𝑐1  and 𝑐2  are randomly taken from 0.5 to 2.0, 

respectively. The equations are as follows 

𝑐1
′ = 𝑐2

′ = 1.3 + (2.0 − 1.3)𝑟𝑎𝑛𝑑( ) , (5.46) 

Take equation (5.46) into equation (5.44) and get 

𝑣𝑖𝑑 = 𝑤 ∗ 𝑣𝑖𝑑 + 𝑐1
′ 𝑟1(𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2

′ 𝑟2(𝑝𝑔𝑑 − 𝑥𝑖𝑑) , (5.47) 
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where equation (5.47) and equation (5.45) together form the equal random learning factor PSO 

algorithm in this thesis. We performed this novel PSO based on the designed PD impedance 

parameter optimization hybrid controller to explore whether it contributes to the optimization of 

impedance parameters. To obtain optimal control results, the novel algorithm optimizes the 

impedance parameters when the ITAE standard is reached. 

𝐽 = ∫ 𝑡|𝑒(𝑡)𝑑𝑡|
∞

0

 , (5.48) 

where 𝐽 is the ITAE criterion; 𝑒(𝑡) denotes the deviation value from the target impedance. The 

flow chart of the developed hybrid controller for impedance parameter optimization based on PSO 

algorithm is shown in Fig. 5.14. 
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Figure 5.14 Flowchart for the hybrid controller based on PSO algorithm. 

This novel PSO algorithm proved to be effective in solving the pure hysteresis problem met in 

process control[139]. Theoretically, the method can be used to improve the optimization of the 

target impedance, but it requires online identification of the impedance parameters of the obtained 

affected limb. We will solve this problem in future work. 

5.6 Conclusion 

This chapter established the kinematics and kinetics model of the hip-knee robot. A PD 

controller with gravity compensation was developed, and the simulation results verified that the 

controller can basically realize the trajectory tracking of hip and knee joints. Then, a robust 

adaptive PD controller was designed. This controller not only eliminates the excessive initial 

torque output of the system but also significantly improves the anti-interference capability. Finally, 

a variable parameter impedance controller was designed to address the need for different damping 

effects and elasticity effects during the rehabilitation process. This controller allows the physical 
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therapist to adjust the damping and stiffness values according to the rehabilitation needs to achieve 

the desired damping effect and stiffness effect, thus improving the rehabilitation efficiency of the 

affected limb.  
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Chapter 6. Conclusions 

6.1 Contributions 

This article dealt with a framework for clinical gait analysis of an exoskeleton rehabilitation 

robot based on predictive assessment. Firstly, the musculoskeletal model of the affected limb is 

modified using OpenSim based on medical advice, and the modified model is simulated by 

SCONE for predictive optimization, aiming to reappear the pathological gait. In this thesis, taking 

the BFSH muscle groups as an example, the effects of BFSH muscle contracture and weakness on 

the knee joint motion are studied separately for three severity: mild, moderate and severe. The 

simulation shows that at different severity of BFSH contracture and BFSH muscle weakness, there 

are varying impacts on both walking speed and maximum knee flexion angle. And then, based on 

the musculoskeletal model, the lower limb exoskeleton rehabilitation robot control system model 

based on impedance control is designed, and the optimized parameters of each joint are applied as 

the desired values of the exoskeleton robot, and the PID control parameters are tuned offline 

basing on the desired values to realize the trajectory tracking and load torque tracking of the 

rehabilitation robot. The simulation result shows that the knee joint angle tracking and load 

tracking of the lower limb exoskeleton rehabilitation robot based on impedance control can be 

adjusted in real-time in healthy gait and severe contracture gait, respectively, which realizes the 

customized setting of each parameter of the rehabilitation robot according to different pathological 

gait during the passive training in the initial rehabilitation stage, so that the robot can gradually 

correct the pathological gait trajectory of the affected limb on the basis of the pathological gait 

trajectory of the affected limb and avoid the injury during this period. Finally, the activation of 

BFSH in continuous gait is detected by using EMG sensors, and the experimental result shows 

that BFSH mainly affected the swing phase of the lower limb in one gait cycle, which verified that 

the predictive simulation assessment model is correct and feasible. 

In this thesis, we model pathological gait by predicting forward dynamics, using minimizing 

the total cost of transport within a self-selected speed while ensuring head stability as a high-level 

goal. The gait controller utilizes a combination of state machines and low-level control laws to 

determine the excitation, and calculate the optimal motion trajectory to perform a given task. We 

attempted to explore the characteristics for reproducing the patient's gait just by modifying the 

parameters of the model muscles. Therefore, mild, moderate and severe muscle weakness or 

contractures were applied to the HAMS, GAS and BFSH muscle groups, respectively, and the 

models were trained to walk at self-selected speeds. Finally, we developed an impedance control 

model for the lower limb exoskeleton rehabilitation robot: we adopted the knee joint angle and 

torque parameters optimized by using predictive forward dynamics simulation as the expected 

values for the robot in order to achieve customized tuning for the robot motion trajectory. The 

framework not only realizes progressive rehabilitation training but also reduces the wearer's 

resistance. 

A novel approach of clinical gait analysis based on predictive assessment for the exoskeleton 

rehabilitation robot is proposed, which mainly consists of a clinical gait assessment module based 

on predictive simulation and a variable parameter impedance robot controller module with gravity 

compensation. The thesis established a musculoskeletal model for predictive forward simulation 
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and opted for self-selected speed to investigate the impact relationships of the model's HAMS, 

GAS and BFSH muscle groups on the knee joint in gait cycle, respectively. On this basis, it was 

proposed that the parameters of the predictive simulation muscle model were appropriately 

modified according to the affected limb diagnosis combined with the impact relationships of the 

model muscle groups on the knee joint to obtain the simulation model and the optimized 

parameters of each joint to obtain the maximum matching of the clinical gait. Real-time 

parameters of knee joint angle and torque in gait cycle were applied as the expected values of 

impedance controller for exoskeleton rehabilitation robot in this thesis, and different angle 

trajectory tracking and torque tracking effects of the robot were obtained by adjusting damping 

matrix and stiffness matrix parameters of impedance controller. 

6.2 Future work and prospect 

Our future work will be devoted to the study of the effects of different muscles of the lower 

limb on gait, aiming to reach the goal that the pathological gait predictive model can be quickly 

obtained based on the medical advice of the affected limb. In addition, we will also work on the 

study of the master-slave control strategy of the lower limb exoskeleton robot, not only to 

optimize the tracking accuracy of the robot, but also to improve the comfort of wearing by the 

patient. 

We developed an impedance controller with variable parameters for the lower limb 

exoskeleton rehabilitation robot. Although gravity compensation is taken into account, we equate 

the inertia matrix of the impedance model and the inertia matrix of the robot model, however, in 

the later stage of rehabilitation training, the acceleration of the rehabilitation robot will increase 

with the strength enhancement of the affected limb, and the performance of our impedance 

controller will decline. To achieve the ideal impedance control, it is necessary to meet the 

requirements of obtaining real-time feedback of the robot joint angle and joint angular velocity, 

real-time feedback of the robot joint torque, and torque control of the robot. Therefore, our 

impedance controller is only suitable for the early stage of rehabilitation when the rehabilitation 

movement is slow. To achieve ideal impedance control, we need to satisfy the requirements of 

obtaining real-time feedback of the robot's joint angle and joint angular velocity, real-time 

feedback of the robot's joint torque, and the robot's torque control. These are also the main 

contents of our next work. 

Because the EEG signal is very weak and easily disturbed, we scaled up the raw EEG data set 

of the 13 channels acquired for the motor imagery EEG experiment. From the analysis of the data, 

it is obvious that the subjects showed a significant peak at the moments of prepared squatting and 

full standing up. However, if we want to improve the accuracy of MI, we need not only accurate 

EEG hardware equipment, but also an appropriate BCI experimental paradigm for effective 

external stimulation. The stimulus interface and stimulus presentation style for MI is mainly 

implemented using HMI. Studying the MI-BCI paradigm and the development of HMI will be the 

main part of our work in the next step. 

The PD controller for the LLER robot in Chapter 5 can achieve better trajectory tracking. 

Among them, the proportion and differential coefficients of the PD controller are used to obtain 

better trajectory tracking by trial and error method. In order to obtain better parameters, we try to 

find the optimal value for a given range of parameters, using the PSO algorithm. 
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Finally, we have the following personal views on the current status and development of the 

exoskeleton industry. There are several major applications for exoskeletons: military, medical 

rehabilitation, industrial applications (assisted handling and lifting), and consumer products 

(assisted walking and motion assistance). 

1. Military Applications. Many countries are currently developing, but there are no mature 

products yet, in the stage of equipment experimentation and verification. There is a great demand 

for this, but the current technical performance and reliability of exoskeleton products can not meet 

the requirements. The future of exoskeletons for military use will only be a breakthrough, and 

exoskeletons will become equipment similar to soldiers' helmets. Exoskeletons for military use 

will be a big development in the future, and there will be no possibility of stagnation or decline. 

2. Medical Rehabilitation. Although the United States and Japan have commercial 

applications of the product, the actual market and medical applications are very limited. Mainly 

the risk of using the equipment is too high, hospitals and doctors do not dare to use it and do not 

want to use it. A patient fall or other accidents can occur to make healthcare staff suffer the risk of 

losing their careers or hospitals face huge compensation. Especially in foreign countries, such as 

the United States, for example, one medical malpractice lawsuit can make a practicing doctor 

bankrupt or in debt. Therefore, the safety of medical rehabilitation equipment is definitely put in 

the first place. At present, lower limb rehabilitation is mainly based on fixed, sitting horizontal and 

passive rehabilitation equipment. The equipment is simple, reliable, safe and controllable. There is 

no need for special personnel to accompany and protect. The operation, disinfection, cleaning and 

maintenance are simple. The hospital and medical staff basically dare to use it with confidence. 

3. Industrial Applications. Due to the wide use of exoskeleton for industrial use, there is a 

huge demand in the international market. This type of exoskeleton has the trend of becoming an 

auxiliary tool or labor protection appliance in production or the workplace. Most of the current 

industrial exoskeletons are still passive or pneumatic active, which are mechanical or 

electromechanical products and cannot be considered robots. Passive exoskeletons take the route 

of lower threshold and specific use, which is difficult to industrialize or form a new industry. 

Active exoskeleton robots (no power supply cable, battery-driven) will be the future development 

direction with great potential. 

4. Consumer Products. This field should be the largest market in the future, Japan HONDA, 

Korea SAMSUNG, China CONCHIN (Shenzhen Kenchin Technology) and Switzerland and some 

other companies have launched assisted walking exoskeleton. For example: people who need to 

walk and stand for a long time or occupation (for example, tour guide, police, outdoor activities 

and other market segments and uses), the elderly (aging and rehabilitation market), people with 

mobility problems and other markets. In addition, some sports-assisted exoskeletons and 

photography-assisted exoskeletons are also gradually developed, forming a confirmed market 

demand. We believe that the civilian consumer application of exoskeletons will be the largest 

potential market in the future, but the market has yet to be further validated. 
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Appendix 

A: Predictive assessment of the high-level control state of the simulation 

Our control laws for the actuators are based on the muscle-reflex controller introduced by 

Geyer and Herr [80]. The modifications we made are described in section 3.2. Two different sets 

of control laws apply for each muscle, depending on whether the leg is in stance or swing phase 

(i.e., the foot is on the ground or not). We further defined a start swing state within the stance 

phase, and a stance preparation state within the swing phase, where control laws for a subset of 

MTUs are modified (see Fig. 0.1 below). The high-level control state of each leg is determined by 

the comparison of 𝑑, 𝐹𝐺𝑅𝐹 and stance load threshold, swing load threshold, landing threshold and 

late stance threshold. The threshold parameters are obtained from the new model (the parameters 

of the model are modified) after being optimized by the CMA-ES algorithm. Table 0.1 shows the 

result of thresholds for Con-Sev. 

 

Figure 0.1 High-level control states for each leg [145]. (A) denotes the signed horizontal distance 

(𝑑) between the center of gravity and the ankle of the model. (B) denotes the stance and swing 

phases triggered by the ground reaction force (𝐹𝐺𝑅𝐹). (C) is the state transition for high-level 

control of each leg. 𝐹(𝑠𝑡𝑎𝑛𝑐𝑒 𝑙𝑜𝑎𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) , 𝐹(𝑠𝑤𝑖𝑛𝑔 𝑙𝑜𝑎𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ), 𝑑(𝑙𝑎𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)  and 

𝑑(𝑙𝑎𝑡𝑒 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)  are the threshold parameters, respectively. Corresponds to the 4 range 

thresholds and load thresholds mentioned in section 3.1. 
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Table 0. 1 Con-Sev optimized gait conversion parameters 

Parameter name 
Population best 

(CMA-ES) 

Population mean 

(CMA-ES) 

Population standard 

deviation (CMA-ES) 

Stance load threshold 0.16124508 0.160903 0.01 

Swing load threshold 0.23435794 0.23449639 0.01 

Landing threshold 0.06623917 0.06597286 0.01 

Late stance threshold -0.01225637 -0.01302969 0.01 

The predicted forward simulation mentioned in chapter 3 is realized as follows: the control 

law of the model simulation gait consists of 70 free parameters (low-level control law), 16 model 

kinematic parameters and 4 range parameters and load parameters (high-level control state), for a 

total of 90 free parameters. Section 3.1.5 is specifically: the modified model, after the optimization 

search with the CMA-ES algorithm in SCONE, obtains these 90 optimal parameters according to 

the objective function (see Equation 3.14). Therefore, the simulation results present a complete 

gait cycle, which, of course, can be set in SCONE with continuous gait. 

The predictive dynamics simulation is achieved by optimizing the parameters. However, in 

the simulation experiments, we found that the sensitivity to gait was generally low by modifying 

the muscle parameters of the model, which may be due to the fact that the MTU of the model is 

not rich enough to fully simulate the actual lower limb motion. Therefore, our proposed predictive 

assessment module can only restore the approximate pathological gait, and of course, the lower 

limb exoskeleton rehabilitation robot needs to reasonably adopt the data generated by the 

predictive assessment module after the intervention of a physical therapist. Improving the 

efficiency of the predictive assessment data is one of our priorities.  

Our predictive assessment module is mainly implemented using 2 software: Opensim, which 

builds the muscle-tendon-skeleton model, and SCONE, which uses a Covariance Matrix 

Adaptation Evolutionary Strategy (CMA-ES) optimization method to achieve optimized results 

for different models. Prof. Hartmut Geyer is one of the developers of SCONE, and this thesis 

involves the research of SCONE, which is based on the previous research of scone developers. In 

addition, we are very grateful to Thomas Geijtenbeek, one of the SCONE developers, for his help 

with our work. 

B: Measurements for predictive assessment simulation 

For the kinematic model in the prediction assessment module, we used the model from Ong, 

Carmichael F. et al[3] after measurements on normal subjects using Opensim. It serves as the 

kinematic target path threshold range for the model after being modified with MTU parameters. 

This threshold information corresponds to the 16 model kinematic parameters described 

previously. The initial model is the collection of the kinematic and force feedback data of the 

subject and the modeling is achieved by the following steps: 1. Experimental kinematics is used to 

scale the musculoskeletal model to match the dimensions of the object; 2. Solving the inverse 

kinematics (IK) problem to find the model joint angles that best reproduce the experimental 
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kinematics. 3. A residual reduction algorithm (RRA) is used to refine the model kinematics to be 

more dynamically consistent with the experimental reaction forces and moments. 4. A 

computational muscle control (CMC) algorithm is used to find a set of muscle excitations that will 

generate forward dynamic simulations that closely track the object's motion. From this, slow-

twitch ratios were determined for 12 muscle models of the lower limbs, as shown in Table 3.1. 

C: Initial Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) 

standard deviation for each free parameter. 

Table 0.2.  

Table 0. 2 Initial CMA-ES standard deviation for each free parameter. 

Parameter Description * 
Initial CMA-ES 

standard deviation 

𝐾𝐶  Constant excitation (𝑢𝐶 = 𝐾𝐶) 0.01 

𝐾𝐹± Force feedback gain (Eq 3.10) 0.1 

𝐾𝐿+ Length feedback gain (Eq 3.11) 0.1 

𝑙0 Length feedback offset (Eq 3.11) 0.05 

𝐾𝑉+ Velocity feedback gain (Eq 3.12) 0.05 

𝐾𝑝 Pelvis tilt orientation feedback gain (Eq 3.13) 0.05 

𝜃0 Pelvis tilt orientation offset (Eq 3.13) 0.01 

𝐾𝑣 Pelvis tilt velocity feedback gain (Eq 3.13) 0.05 

ES to MS Horizontal distance between foot and pelvis 0.01 

PS to S GRF on foot 0.01 

S to LP Horizontal distance between foot and pelvis 0.01 

LP to ES GRF on foot 0.01 

Initial positions Initial pelvis tilt, hip, knee, and ankle angles 0.01 

Initial velocities Initial pelvis tilt, hip, knee, and ankle angular velocities.  0.01 

Initial pelvis 

horizontal velocity 

(specified speed) 

Initial pelvis horizontal velocity during a simulation with 

a specified speed. 
0.01 

Initial pelvis 

horizontal velocity 

(self-selected speed) 

Initial pelvis horizontal velocity during a self-selected 

speed simulation. 
0.1 

* Equation numbers in this column refer to those in chapter 3.1.4. 
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