ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 長崎総合科学大学紀要 ONLINE ISSN 2423-9976
  2. 64巻
  3. 1号

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure ─ Part 3 : Submerged Circular Cylinder and Arbitrary Shaped Submerged Body ─

https://nias.repo.nii.ac.jp/records/2000047
https://nias.repo.nii.ac.jp/records/2000047
c556131c-cfda-47d9-8997-e39bfc9c0a1a
名前 / ファイル ライセンス アクション
pp.27-48 Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure ─ Part 3 : Submerged Circular Cylinder and Arbitrary Shaped Submerged Body ─ (2.2 MB)
Item type 紀要論文(ELS) / Departmental Bulletin Paper(1)
公開日 2024-06-21
タイトル
タイトル Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure ─ Part 3 : Submerged Circular Cylinder and Arbitrary Shaped Submerged Body ─
言語 en
言語
言語 eng
キーワード
言語 en
主題Scheme Other
主題 Center of Buoyancy
キーワード
言語 en
主題Scheme Other
主題 Hydrostatic Pressure
キーワード
言語 en
主題Scheme Other
主題 Archimedes' Principle
キーワード
言語 en
主題Scheme Other
主題 Submerged Circular Cylinder
キーワード
言語 en
主題Scheme Other
主題 Arbitrary Shaped Submerged Body
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者名(日) 堀, 勉

× 堀, 勉

ja 堀, 勉

ja-Kana ホリ, ツトム

Search repository
著者名(英) Hori, Tsutomu

× Hori, Tsutomu

en Hori, Tsutomu


Search repository
抄録(英)
内容記述タイプ Other
内容記述 We recently proved that “ the center of buoyancy is equal to the center of hydrostatic pressure ” for floating bodies. This subject was an unsolved problem in physics and naval architecture, even though the buoyancy taught by Archimedes' principle can be obtained clearly by the surface integral of hydrostatic pressure. Then we thought that the reason why the vertical position of the center of pressure could not be determined was that the horizontal force would be zero due to equilibrium in the upright state.
 As a breakthrough, we dared to create the left - right asymmetric pressure field by inclining the floating body with heel angle θ. In that state, the forces and moments due to hydrostatic pressure were calculated correctly with respect to the tilted coordinate system fixed to the body. By doing so, we succeeded in determining the center of pressure. Then, by setting the heel angle θ to zero in order to make it upright state, it could be proved that the center of hydrostatic pressure is equal to the well-known center of buoyancy, i.e., the centroid of the cross - sectional area under the water surface.
 As mentioned above, we have already proved this problem for rectangular and arbitrarily shaped cross-sections, and published them on this bulletin of our university in English. Following that, in the 2nd report, separate proofs for a semi - submerged circular cylinder and a triangular prism were also published here. Thus, we have completed the proof for floating bodies, so in this 3rd report, we aim to prove for submerged bodies. We first prove for a submerged circular cylinder, and then apply Gauss's integral theorem to prove it clearly for an arbitrarily shaped submerged body.
言語 en
ISSN
収録物識別子タイプ EISSN
収録物識別子 2423-9976
雑誌書誌ID
収録物識別子タイプ NCID
収録物識別子 AA1274191X
書誌情報 ja : 長崎総合科学大学紀要
en : Bulletin of the Nagasaki Institute of Applied Science

巻 64, 号 1, p. 27-48, 発行日 2024-06-21
発行者
出版者 長崎総合科学大学附属図書館運営委員会
言語 ja
戻る
0
views
See details
Views

Versions

Ver.1 2024-06-19 08:21:46.360902
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3