WEKO3
アイテム
Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure ─ Part 3 : Submerged Circular Cylinder and Arbitrary Shaped Submerged Body ─
https://nias.repo.nii.ac.jp/records/2000047
https://nias.repo.nii.ac.jp/records/2000047c556131c-cfda-47d9-8997-e39bfc9c0a1a
名前 / ファイル | ライセンス | アクション |
---|---|---|
Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure ─ Part 3 : Submerged Circular Cylinder and Arbitrary Shaped Submerged Body ─ (2.2 MB)
|
|
Item type | 紀要論文(ELS) / Departmental Bulletin Paper(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2024-06-21 | |||||||||
タイトル | ||||||||||
タイトル | Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure ─ Part 3 : Submerged Circular Cylinder and Arbitrary Shaped Submerged Body ─ | |||||||||
言語 | en | |||||||||
言語 | ||||||||||
言語 | eng | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Center of Buoyancy | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Hydrostatic Pressure | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Archimedes' Principle | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Submerged Circular Cylinder | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Arbitrary Shaped Submerged Body | |||||||||
資源タイプ | ||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||
資源タイプ | departmental bulletin paper | |||||||||
アクセス権 | ||||||||||
アクセス権 | open access | |||||||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||||||
著者名(日) |
堀, 勉
× 堀, 勉
|
|||||||||
著者名(英) |
Hori, Tsutomu
× Hori, Tsutomu
|
|||||||||
抄録(英) | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | We recently proved that “ the center of buoyancy is equal to the center of hydrostatic pressure ” for floating bodies. This subject was an unsolved problem in physics and naval architecture, even though the buoyancy taught by Archimedes' principle can be obtained clearly by the surface integral of hydrostatic pressure. Then we thought that the reason why the vertical position of the center of pressure could not be determined was that the horizontal force would be zero due to equilibrium in the upright state. As a breakthrough, we dared to create the left - right asymmetric pressure field by inclining the floating body with heel angle θ. In that state, the forces and moments due to hydrostatic pressure were calculated correctly with respect to the tilted coordinate system fixed to the body. By doing so, we succeeded in determining the center of pressure. Then, by setting the heel angle θ to zero in order to make it upright state, it could be proved that the center of hydrostatic pressure is equal to the well-known center of buoyancy, i.e., the centroid of the cross - sectional area under the water surface. As mentioned above, we have already proved this problem for rectangular and arbitrarily shaped cross-sections, and published them on this bulletin of our university in English. Following that, in the 2nd report, separate proofs for a semi - submerged circular cylinder and a triangular prism were also published here. Thus, we have completed the proof for floating bodies, so in this 3rd report, we aim to prove for submerged bodies. We first prove for a submerged circular cylinder, and then apply Gauss's integral theorem to prove it clearly for an arbitrarily shaped submerged body. |
|||||||||
言語 | en | |||||||||
ISSN | ||||||||||
収録物識別子タイプ | EISSN | |||||||||
収録物識別子 | 2423-9976 | |||||||||
雑誌書誌ID | ||||||||||
収録物識別子タイプ | NCID | |||||||||
収録物識別子 | AA1274191X | |||||||||
書誌情報 |
ja : 長崎総合科学大学紀要 en : Bulletin of the Nagasaki Institute of Applied Science 巻 64, 号 1, p. 27-48, 発行日 2024-06-21 |
|||||||||
発行者 | ||||||||||
出版者 | 長崎総合科学大学附属図書館運営委員会 | |||||||||
言語 | ja |