ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 長崎総合科学大学紀要 ONLINE ISSN 2423-9976
  2. 63巻
  3. 2号

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure —Part 2 : Semi-Submerged Circular Cylinder and Triangular Prism—

https://nias.repo.nii.ac.jp/records/2000005
https://nias.repo.nii.ac.jp/records/2000005
15304368-4447-42b9-b09f-28d45e865133
名前 / ファイル ライセンス アクション
pp.117-143 pp.117-143 ”Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 2) Semi-Submerged Circular Cylinder and Triangular Prism” by Tsutomu HORI(Vol.63 No.2).pdf (1.2 MB)
Item type 紀要論文(ELS) / Departmental Bulletin Paper(1)
公開日 2023-12-26
タイトル
タイトル Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure —Part 2 : Semi-Submerged Circular Cylinder and Triangular Prism—
言語 en
言語
言語 eng
キーワード
言語 en
主題Scheme Other
主題 Center of Buoyancy
キーワード
言語 en
主題Scheme Other
主題 Hydrostatic Pressure
キーワード
言語 en
主題Scheme Other
主題 Archimedes' Principle
キーワード
言語 en
主題Scheme Other
主題 Surface Integral
キーワード
言語 en
主題Scheme Other
主題 Semi Submerged Circular Cylinder
キーワード
言語 en
主題Scheme Other
主題 Triangular Prism
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
著者名(日) 堀, 勉

× 堀, 勉

ja 堀, 勉

ja-Kana ホリ, ツトム

Search repository
著者名(英) Hori, Tsutomu

× Hori, Tsutomu

en Hori, Tsutomu

Search repository
著者所属(日)
ja
長崎総合科学大学
著者所属(英)
en
Nagasaki Institute of Applied Science
抄録(英)
内容記述タイプ Other
内容記述 We recently proved that “ the center of buoyancy of floating bodies is equal to the center of hydrostatic pressure". This subject was an unsolved problem in physics and naval architecture, even though the buoyancy taught by Archimedes' principle can be obtained clearly by the surface integral of hydrostatic pressure. Then we thought that the reason why the vertical position of the center of pressure could not
be determined was that the horizontal force would be zero due to equilibrium in the upright state.
 As a breakthrough, we dared to assume the left right asymmetric pressure field by inclining the floating body with heel angle θ. In that state, the force and moment due to hydrostatic pressure were calculated correctly with respect to the tilted coordinate system fixed to the body. By doing so, we succeeded in determining the center of pressure. Then, by setting the heel angle θ to zero in order to make it upright state, it could be proved that the center of hydrostatic pressure is equal to the well-known center of buoyancy, i.e., the centroid of the cross-sectional area under the water surface.
 As noted above, we have already proved this problem for rectangular and arbitrarily shaped cross-sections, and published them here on viXra.org in English. Although the case of a semi-submerged circular cylinder and a triangular prism are also included in the proof of arbitrary shapes, we prove for each shape separately in this 2nd report, since they are two typical cross-sectional shapes along with rectangles. However, there is an essential difference in the proof between the two shapes . The reason is why the former does not change its underwater shape when inclined laterally, while the latter, like the rectangle, changes its cross-sectional shape when inclined. The present paper provides clear proofs for both shapes.
言語 en
ISSN
収録物識別子タイプ EISSN
収録物識別子 24239976
雑誌書誌ID
収録物識別子タイプ NCID
収録物識別子 AA1274191X
書誌情報 ja : 長崎総合科学大学紀要
en : Bulletin of the Nagasaki Institute of Applied Science

巻 63, 号 2, p. 117-143, 発行日 2023-12-26
発行者
出版者 長崎総合科学大学附属図書館運営委員会
言語 ja
戻る
0
views
See details
Views

Versions

Ver.1 2023-12-26 03:33:52.288672
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3