WEKO3
アイテム
Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure —Part 2 : Semi-Submerged Circular Cylinder and Triangular Prism—
https://nias.repo.nii.ac.jp/records/2000005
https://nias.repo.nii.ac.jp/records/200000515304368-4447-42b9-b09f-28d45e865133
Item type | 紀要論文(ELS) / Departmental Bulletin Paper(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2023-12-26 | |||||||||
タイトル | ||||||||||
タイトル | Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure —Part 2 : Semi-Submerged Circular Cylinder and Triangular Prism— | |||||||||
言語 | en | |||||||||
言語 | ||||||||||
言語 | eng | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Center of Buoyancy | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Hydrostatic Pressure | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Archimedes' Principle | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Surface Integral | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Semi Submerged Circular Cylinder | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Triangular Prism | |||||||||
資源タイプ | ||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||
資源タイプ | departmental bulletin paper | |||||||||
著者名(日) |
堀, 勉
× 堀, 勉
|
|||||||||
著者名(英) |
Hori, Tsutomu
× Hori, Tsutomu
|
|||||||||
著者所属(日) | ||||||||||
言語 | ja | |||||||||
値 | 長崎総合科学大学 | |||||||||
著者所属(英) | ||||||||||
言語 | en | |||||||||
値 | Nagasaki Institute of Applied Science | |||||||||
抄録(英) | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | We recently proved that “ the center of buoyancy of floating bodies is equal to the center of hydrostatic pressure". This subject was an unsolved problem in physics and naval architecture, even though the buoyancy taught by Archimedes' principle can be obtained clearly by the surface integral of hydrostatic pressure. Then we thought that the reason why the vertical position of the center of pressure could not be determined was that the horizontal force would be zero due to equilibrium in the upright state. As a breakthrough, we dared to assume the left right asymmetric pressure field by inclining the floating body with heel angle θ. In that state, the force and moment due to hydrostatic pressure were calculated correctly with respect to the tilted coordinate system fixed to the body. By doing so, we succeeded in determining the center of pressure. Then, by setting the heel angle θ to zero in order to make it upright state, it could be proved that the center of hydrostatic pressure is equal to the well-known center of buoyancy, i.e., the centroid of the cross-sectional area under the water surface. As noted above, we have already proved this problem for rectangular and arbitrarily shaped cross-sections, and published them here on viXra.org in English. Although the case of a semi-submerged circular cylinder and a triangular prism are also included in the proof of arbitrary shapes, we prove for each shape separately in this 2nd report, since they are two typical cross-sectional shapes along with rectangles. However, there is an essential difference in the proof between the two shapes . The reason is why the former does not change its underwater shape when inclined laterally, while the latter, like the rectangle, changes its cross-sectional shape when inclined. The present paper provides clear proofs for both shapes. |
|||||||||
言語 | en | |||||||||
ISSN | ||||||||||
収録物識別子タイプ | EISSN | |||||||||
収録物識別子 | 24239976 | |||||||||
雑誌書誌ID | ||||||||||
収録物識別子タイプ | NCID | |||||||||
収録物識別子 | AA1274191X | |||||||||
書誌情報 |
ja : 長崎総合科学大学紀要 en : Bulletin of the Nagasaki Institute of Applied Science 巻 63, 号 2, p. 117-143, 発行日 2023-12-26 |
|||||||||
発行者 | ||||||||||
出版者 | 長崎総合科学大学附属図書館運営委員会 | |||||||||
言語 | ja |